Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.
Answer:
50 W
Explanation:
Case 1
Power = V * I
100 = 220 * I
I =
A
Case 2
P = V * I
P = 110 * 
P = 50 W
I think the answer is 50 W
Hope it helps
Answer:
Tangential
Explanation: This is a kind of force which act on a moving body in such a way that it is curved in the direction of the path of the body. This implies that when the velocity of the object is positive, the acceleration will be negative.
Refer to the diagram shown below.
The hoist is in static equilibrium supported by tensions in the two ropes.
For horizontal force balance, obtain
T₃ cos 50 = T₂ cos 38
0.6428T₃ = 0.788T₂
T₃ = 1.2259T₂ (1)
For vertical force balance, obtain
T₂ sin 38 + T₃ sin 50 = 350
0.6157T₂ + 0.766T₃ = 350 (2)
Substitute (1) into (2).
0.6157T₂ + 0.766(1.2259T₂) = 350
1.5547T₂ = 350
T₂ = 225.124 N
T₃ = 1.2259(225.124) = 275.979
Answer:
T₂ = 225.12 N
T₃ = 275.98 N