At r = 0.766 R the magnetic field intensity will be half of its value at the center of the current carrying loop.
We have a circular loop of radius ' r ' carrying current ' i '.
We have to find at what distance along the axis of the loop is the magnetic field one-half its value at the center of the loop.
<h3>What is the formula to calculate the
Magnetic field intensity due to a current carrying circular loop at a point on its axis?</h3>
The formula to calculate the magnetic field intensity due to a current carrying ( i ) circular loop of radius ' R ' at a distance ' x ' on its axis is given by -

Now, for magnetic field intensity at the center of the loop can calculated by putting x = 0 in the above equation. On solving, we get -

Let us assume that the distance at which the magnetic field intensity is one-half its value at the center of the loop be ' r '. Then -




r = 0.766R
Hence, at r = 0.766 R - the magnetic field intensity will be half of its value at the center of the current carrying loop.
To solve more questions on magnetic field intensity, visit the link below-
brainly.com/question/15553675
#SPJ4
Answer:
Explanation:
B- The red horse's average speed was greater than the black horse's average speed.
Red average speed = 1/120 = 0.00833 mi/s
Black average speed = 1/150 = 0.00667 mi/s
we only know about average speed based on the information given. Either horse could have had higher or lower, even negative, instantaneous speed during some phase of the race.
The water formed on the surface of the water evaporation loss (evaporation), consisting of plant transpiration water loss (transpiration) is called. Soil near the plant and the resulting water loss is called by evapotranspiration.