Answer:
The mass of the banana is m and it is at height h.
Applying the Law of Conservation of Energy
Total Energy before fall = Total Energy after fall
=
Here, total energy is the sum of kinetic energy and potential energy
+
=
+
(a)
When banana is at height h, it has
= 0 and
= mgh
and when it reaches the river, it has
= 1/2m
and
= 0
Putting the values in equation (a)
0 + mgh = 1/2m
+ 0
mgh = 1/2m
<em>cutting 'm' from both sides</em>
<em> </em>gh = 1/2
v = 
Hence, the velocity of banana before hitting the water is
v = 
The total distance is 70km.
The total time is 60 minutes or 1 hour.
Speed=Distance÷Time
=70÷1
=70km/h
Law of conservation of mass
Answer:
14 m/s
Explanation:
The following data were obtained from the question:
Mass = 50 kg
Initial velocity (u) = 0 m/s
Height (h) = 10 m
Acceleration due to gravity (g) = 9.8 m/s²
Final velocity (v) =?
The velocity (v) with which the person hit the water can be obtained as shown below:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 10)
v² = 0 + 196
v² = 196
Take the square root of both side
v = √196
v = 14 m/s
Therefore, he will hit the water with a speed of 14 m/s