1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet-ann [11.9K]
3 years ago
9

Why is it important that two different metals are used in building an electrochemic cell?

Physics
1 answer:
Mnenie [13.5K]3 years ago
5 0

Answer:

Explanation:

They need a galvanic difference. Or saying that less technically,  they need to have different electron attraction, so that one can collect electrons (oxidation/reduction)  and flow current from the other.  :)

You might be interested in
A mortar is like a small cannon that launches shells at steep angles. A mortar crew is positioned near the top of a steep hill.
Elena-2011 [213]

1) Distance down the hill: 1752 ft (534 m)

2) Time of flight of the shell: 12.9 s

3) Final speed: 326.8 ft/s (99.6 m/s)

Explanation:

1)

The motion of the shell is a projectile motion, so we  can analyze separately its vertical motion and its horizontal motion.

The vertical motion of the shell is a uniformly accelerated motion, so the vertical position is given by the following equation:

y=(u sin \theta)t-\frac{1}{2}gt^2 (1)

where:

u sin \theta is the initial vertical velocity of the shell, with u=156 ft/s and \theta=49.0^{\circ}

g=32 ft/s^2 is the acceleration of gravity

At the same time, the horizontal motion of the shell is a uniform motion, so the horizontal position of the shell at time t is given by the equation

x=(ucos \theta)t

where u cos \theta is the initial horizontal velocity of the shell.

We can re-write this last equation as

t=\frac{x}{u cos \theta} (1b)

And substituting into (1),

y=xtan\theta -\frac{1}{2}gt^2 (2)

where we have choosen the top of the hill (starting position of the shell) as origin (0,0).

We also know that the hill goes down with a slope of \alpha=-41.0^{\circ} from the horizontal, so we can write the position (x,y) of the hill as

y=x tan \alpha (3)

Therefore, the shell hits the slope of the hill when they have same x and y coordinates, so when (2)=(3):

xtan\alpha = xtan \theta - \frac{1}{2}gt^2

Substituting (1b) into this equation,

xtan \alpha = x tan \theta - \frac{1}{2}g(\frac{x}{ucos \theta})^2\\x (tan \theta - tan \alpha)-\frac{g}{2u^2 cos^2 \theta} x^2=0\\x(tan \theta - tan \alpha-\frac{gx}{2u^2 cos^2 \theta})=0

Which has 2 solutions:

x = 0 (origin)

and

tan \theta - tan \alpha=\frac{gx}{2u^2 cos^2 \theta}=0\\x=(tan \theta - tan \alpha) \frac{2u^2 cos^2\theta}{g}=1322 ft

So, the distance d down the hill at which the shell strikes the hill is

d=\frac{x}{cos \alpha}=\frac{1322}{cos(-41.0^{\circ})}=1752 ft=534 m

2)

In order to find how long the mortar shell remain in the air, we can use the equation:

t=\frac{x}{u cos \theta}

where:

x = 1322 ft is the final position of the shell when it strikes the hill

u=156 ft/s is the initial velocity of the shell

\theta=49.0^{\circ} is the angle of projection of the shell

Substituting these values into the equation, we find the time of flight of the shell:

t=\frac{1322}{(156)(cos 49^{\circ})}=12.9 s

3)

In order to find the final speed of the shell, we have to compute its horizontal and vertical velocity first.

The horizontal component of the velocity is constant and it is

v_x = u cos \theta =(156)(cos 49^{\circ})=102.3 ft/s

Instead, the vertical component of the velocity is given by

v_y=usin \theta -gt

And substituting at t = 12.9 s (time at which the shell strikes the hill),

v_y=(156)(cos 49^{\circ})-(32)(12.9)=-310.4ft/s

Therefore, the  final speed of the shell is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(102.3)^2+(-310.4)^2}=326.8 ft/s=99.6 m/s

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

5 0
3 years ago
Friction, conduction and induction are three ways of creating a static charge on an object. Which method or methods will produce
Agata [3.3K]
Friction as it will move charge (electrons) from one object to another
5 0
3 years ago
How does water get up to the atmosphere, and how does it get back down to earth surface
IrinaK [193]

Answer:

Water gets up to the Earth's atmosphere by evaporating from a body of water, which is then they become water vapor. It returns back to the surface by returning back to its water state and falling back down (as rain). The water vapor turns into clouds (clouds are really just water droplets), and when it cannot hold anymore waters, it disperses all the water (by raining).

6 0
3 years ago
60 POINTS!!
musickatia [10]
How can one explain<span> and predict the </span>interactions between objects<span> and within a system of </span>objects<span>? ... through </span>electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction<span>. ... </span>Forces<span> at a distance are </span>explained<span> by fields (gravitational, </span>electric<span>, and magnetic) ...</span>
8 0
3 years ago
7) Sound waves travel with a nominal speed of 340m/s.
Savatey [412]

Answer:

The wavelengths of C1 is 10.4m, A6 is 0.193m and B7 is 0.0861m

Explanation:

Using the formula V = f×λ . Then substitute the following values into the formula:

a) v=340m/s

f=32.7 Hz

λ=V ÷ f

= 340 ÷ 32.7

= 10.4m (3s.f)

b) λ=340 ÷ 1760

= 0.193m (3s.f)

c) λ=340÷3951.1

= 0.0861m (3s.f)

(Correct me if I am wrong)

4 0
3 years ago
Other questions:
  • A 0.03-kg bullet is fired with a horizontal velocity of 470 m/s and becomes embedded in block B which has a mass of 3 kg. After
    10·2 answers
  • Which one of newton's laws does a doll riding a dog represent
    10·1 answer
  • A cubical water tank with edges measuring 10 feet in length is initially full of water. If the tank were then to lose water at a
    7·1 answer
  • Fill in the term to complete each sentence
    8·2 answers
  • Two particles are separated by 0.38 m and have charges of -6.25 x 10-°C
    13·2 answers
  • Which of the following statements is true? The melting and freezing points of a substance are the same. The melting and boiling
    12·2 answers
  • The terminal speed of a sky diver is 163 km/h in the spread-eagle position and 325 km/h in the nosedive position. Assuming that
    7·1 answer
  • A force of 6600 N is exerted on a piston that has an area of 0.010 m2
    12·1 answer
  • A vector is 14.4 m long and
    8·1 answer
  • Which of the following is false
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!