Answer:
d²x/dt² = - 4dx/dt - 4x is the required differential equation.
Explanation:
Since the spring force F = kx where k is the spring constant and x its extension = 2.45 equals the weight of the 4 kg mass,
F = mg
kx = mg
k = mg/x
= 4 kg × 9.8 m/s²/2.45 m
= 39.2 kgm/s²/2.45 m
= 16 N/m
Now the drag force f = 16v where v is the velocity of the mass.
We now write an equation of motion for the forces on the mass. So,
F + f = ma (since both the drag force and spring force are in the same direction)where a = the acceleration of the mass
-kx - 16v = 4a
-16x - 16v = 4a
16x + 16v = -4a
4x + 4v = -a where v = dx/dt and a = d²x/dt²
4x + 4dx/dt = -d²x/dt²
d²x/dt² = - 4dx/dt - 4x which is the required differential equation
Answer:
The force per unit length (N/m) on the top wire is 16.842 N/m
Explanation:
Given;
distance between the two parallel wire, d = 38 cm = 0.38 m
current in the first wire, I₁ = 4.0 kA
current in the second wire, I₂ = 8.0 kA
Force per unit length, between two parallel wires is given as;

where;
μ₀ is constant = 4π x 10⁻⁷ T.m/A
Substitute the given values in the above equation and calculate the force per unit length

Therefore, the force per unit length (N/m) on the top wire is 16.842 N/m
Answer:
what is the question. . .
Answer:
√(6ax)
Explanation:
Hi!
The question states that during a time t the motorcyle underwent a displacement x at constant acceleration a starting from rest, mathematically we can express it as:
x=(1/2)at^2
Then the we need to find the time t' for which the displacement is 3x
3x=(1/2)a(t')^2
Solving for t':
t'=√(6x/a)
Now, the velocity of the motorcycle as a function of time is:
v(t)=a*t
Evaluating at t=t'
v(t')=a*√(6x/a)=√(6*x*a)
Which is the final velocity
Have a nice day!