the magnitude of charge=q=8.76 x 10⁻⁵C
Explanation:
the magnetic force Fm is given by
Fm= q V B sinθ
q= charge
v= velocity= 2.5 x 10⁴ m/s
B= magnetic field strength= 8.1 x 10⁻²T
Fm= magnetic force= 7.5 x 10⁻² N
θ=25°
so 7.5 x 10⁻² =q (2.5 x 10⁴ ) (8.1 x 10⁻²) sin25
q=8.76 x 10⁻⁵C
The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
A
Answer:
220 ohms
Explanation:
I = V / R
0.25 = 110 / R
R = 110 / 0.25
R = 440 ohms
Equivalent resistance = 440 ohms
Resistance of single light bulb = Equivalent resistance / number of bulbs
= 440 / 2
= 220 ohms
1)a 2)D 3)a. I think the answers are
Answer:
2,87 *
Explanation:
When the bullets meet at the center and collide, since momentum is a vectoral quantity, their momentum vectors even up and are sumof zero. Formula of momentum is P = m.v , where m is mass and v is velocity. Let’s name the first two bullets as x,y and the one which mass is unknown as z. Then calculate momentum of x and y:
Px= 5,30 * * 301 = 1,5953 kg*m/s
Py= 5,30 * * 301 = 1,5953 kg*m/s
The angle between x and y bullets is 120°, and we know that if the angle between two equal magnitude vectors is 120°, the magnitude of the resultant vector will be equal to first two and placed in exact middle of two vectors. So we can say total momentum of x and y (Px+Py) equals to 1,5953 kg*m/s as well (Shown in the figure).
For z bullet to equalize the total momentum of x and y bullets, it needs to have the same amount of momentum in the opposite way.
Pz = 1,5953 = m * 554
m = 2,87 * kg