Answer:
a)
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
the required distance is 40.98 m
Explanation:
Given that;
velocity of the river u = 1.70 m/s
velocity of boat v = 14.0 m/s
Now to get the velocity of the boat relative to shore;
( north of east), we say
a² + b² = c²
(1.70)² + (14.0)² = c²
2.89 + 196 = c²
198.89 = c²
c = √198.89
c = 14.1028 m/s
tan∅ = v/u = 14 / 1.7 = 8.23529
∅ = tan⁻¹ ( 8.23529 ) = 83.0765° north of east
Therefore, the velocity of the boat relative to shore is;
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
width of river = 340 m,
ow far downstream has the boat moved by the time it reaches the north shore in meters = ?
we say;
340sin( 90° - 83.0765°)
⇒ 340sin( 6.9235°)
= 40.98 m
Therefore, the required distance is 40.98 m
Answer:
the final velocity of the car is 59.33 m/s [N]
Explanation:
Given;
acceleration of the car, a = 13 m/s²
initial velocity of the car, u = 120 km/h = 33.33 m/s
duration of the car motion, t = 2 s
The final velocity of the car in the same direction is calculated as follows;
v = u + at
where;
v is the final velocity of the car
v = 33.33 + 13 x 2
v = 59.33 m/s [N]
Therefore, the final velocity of the car is 59.33 m/s [N]
Answer:
Symptoms of excessive stress include all of the following EXCEPT: increased energy level.
Let's start with an infinitive: it has a form "to..." - only sentences C and D have a phrase like this, so we can exclude other options.
Among those, C does not have a gerund, which is a verbal form: "dreaming" has a function of a noun there.
So the correct answer is the remaining one, D.
Answer:
The correct answer is C. 45.5 lbs.
Explanation:
In a second class lever, the load is located between the point in which the force is exerted and the fulcrum.
The formula for any problem involving a lever is:

Where F_e is the effort force, d_e is the total length of the lever, F_l is the load that can be lifted and d_l is the distance between the point of the effort and the fulcrum.
The parameter of the formula that you need is F_l:

The conversion from feet to inches is 1 ft is equal to 12 inches. In this case, 5 ft are equal to 60 inches.

F_l=45.5 lbs