Answer:
p = 8N/mm2
Explanation:
given data ;
diameter of cylinder = 150 mm
thickness of cylinder = 6 mm
maximum shear stress = 25 MPa
we know that
hoop stress is given as =
axial stress is given as =
maximum shear stress = (hoop stress - axial stress)/2
putting both stress value to get required pressure


t = 6 mm
d = 150 mm
therefore we have pressure
p = 8N/mm2
Answer:
The wavelength of wave is 7.5 meter.
Given:
Speed of wave = 1500 
Frequency of wave = 200 Hz
To find:
Wavelength of wave = ?
Formula used:

Where
= wavelength of the wave
v = speed of wave
n = frequency of wave
Solution:
Wavelength of wave is given by,

Where
= wavelength of the wave
v = speed of wave
n = frequency of wave

= 7.5 m
The wavelength of wave is 7.5 meter.
Complete Question
An airplane takes off a runway at a constant speed of 49 m/s at constant angle 30 to the horizontal.How high (in meters ) is the airplane above the ground 13 seconds after takeoff?
Answer:
The height is 
Explanation:
From the question we are told that
The speed at which the plane takes off is 
The angle at which it takes off is 
The time taken is 
The vertical distance traveled is mathematically represented as

Substituting values


The control setup in this experiment would be one tank that does not contain any of the additives. Since the tanks with the gasoline additives would need to be compared with a tank that is not affected by the results of these additives.
During an exothermic reaction; light and heat are released into the environment.
An exothermic reaction is one in which heat is released to the environment. This heat can be physically observed sometimes like in an a combustion reaction.
In an exothermic reaction, the enthalpy of the reactants is greater than the enthalpy of the products.
This heat lost is sometimes felt as the hotness of the vessel in which the reaction has taken place.
In conclusion, light and heat are released into the environment in an exothermic reaction.
Learn more: brainly.com/question/4345448