1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
3 years ago
5

the spectral lines observed for hydrogen arise from transitions from excited states back to the n=2 principle quantum level. Cal

culate the wavelengths associated with the spectral transitions of the hydrogen atom from the n=6,5,4 and 3 to the n=2 level.
Chemistry
2 answers:
Sunny_sXe [5.5K]3 years ago
5 0

Rydberg formula is given by:

\frac{1}{\lambda } = R_{H}\times (\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}} )

where, R_{H} = Rydberg  constant = 1.0973731568508 \times 10^{7} per metre

\lambda = wavelength

n_{1} and n_{2} are the level of transitions.

Now, for n_{1}= 2 and n_{2}= 6

\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{6^{2}} )

= 1.0973731568508 \times 10^{7} \times (\frac{1}{4}-\frac{1}{36} )

= 1.0973731568508 \times 10^{7} \times (0.25-0.0278 )

= 1.0973731568508 \times 10^{7} \times 0.23

= 0.2523958\times 10^{7}

\lambda = \frac{1}{0.2523958\times 10^{7}}

= 3.9620\times 10^{-7} m

= 396.20\times 10^{-9} m

= 396.20 nm

Now, for n_{1}= 2 and n_{2}= 5

\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{5^{2}} )

= 1.0973731568508 \times 10^{7} \times (0.25-0.04 )

= 1.0973731568508 \times 10^{7} \times (0.21 )

= 0.230 \times  10^{7}

\lambda= \frac{1}{0.230 \times 10^{7}}

= 4.3478 \times 10^{-7} m

= 434.78\times 10^{-9} m

= 434.78 nm

Now, for n_{1}= 2 and n_{2}= 4

\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{4^{2}} )

=  1.0973731568508 \times 10^{7} \times (0.25-0.0625 )

= 1.0973731568508 \times 10^{7} \times (0.1875 )

= 0.20575 \times 10^{7}

\lambda= \frac{1}{0.20575 \times 10^{7}}

= 4.8602 \times 10^{-7} m

= 486.02 \times 10^{-9} m

= 486.02 nm

Now, for n_{1}= 2 and n_{2}= 3

\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{3^{2}} )

=  1.0973731568508 \times 10^{7} \times (0.25-0.12 )

=  1.0973731568508 \times 10^{7} \times (0.13 )

= 0.1426585\times 10^{7}

\lambda= \frac{1}{0.1426585\times 10^{7}}

= 7.0097 \times 10^{-7} m

= 700.97 \times 10^{-9} m

= 700.97 nm



eimsori [14]3 years ago
5 0

The wavelengths of spectral line observed in hydrogen atom are,

The value of wavelength of first spectral line from n=6 to n=2 is \boxed{{\text{410}}{\text{.2 nm}}}.

The value of wavelength of second spectral line from n=5 to n=2 is \boxed{{\text{434}}{\text{.1 nm}}} .

The value of wavelength of third spectral line from n=4 to n=2 is \boxed{{\text{486}}{\text{.2 nm}}} .

The value of wavelength of fourth spectral line from n=3 to n=2 is \boxed{{\text{656}}{\text{.3 nm}}} .

Further explanation:

Concept:

According to the Rydberg equation, the wavelength of spectral line related with the transition values as follows:

\frac{1}{\lambda }=\left( {{{\text{R}}_{\text{H}}}}\right)\left({\frac{1}{{{{\left({{{\text{n}}_{\text{f}}}}\right)}^2}}}-\frac{1}{{{{\left({{{\text{n}}_{\text{i}}}}\right)}^2}}}}\right)                       …… (1)

Here, \lambda is the wavelength of spectral line, {{\text{R}}_{\text{H}}}  is the Rydberg constant that has the value 1.097\times{10^7}{\text{ }}{{\text{m}}^{-1}} , {{\text{n}}_{\text{i}}}  is the initial energy level of transition, and {{\text{n}}_{\text{f}}}  is the final energy level of transition.

Therefore, after rearrangement of equation (1) \lambda can be calculated as,

\lambda=\frac{1}{{\left({1.097\times {{10}^7}{\text{ }}{{\text{m}}^{-1}}}\right)\left( {\frac{1}{{{{\left({{{\text{n}}_{\text{f}}}}\right)}^2}}}-\frac{1}{{{{\left({{{\text{n}}_{\text{i}}}}\right)}^2}}}}\right)}}                       …… (2)

Solution:

Finding the wavelength of spectral lines in each transition.

1. For the first transition, from initial energy level n=6 to final energy level n=2.

\begin{aligned}{\lambda _1}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{6}}\right)}^2}}}}\right)}}\\&= 4.102\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{410}}{\mathbf{.2 nm}}\\\end{aligned}

2. For the second transition, from initial energy level n=5 to final energy level n=2.

\begin{aligned}{\lambda _2}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{5}}\right)}^2}}}}\right)}}\\&= 4.341\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{434}}{\mathbf{.1 nm}}\\\end{aligned}

3. For the third transition, from initial energy level n=4 to final energy level n=2.

\begin{aligned}{\lambda _3}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{4}}\right)}^2}}}}\right)}}\\&= 4.862\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{486}}{\mathbf{.2 nm}}\\\end{aligned}

4. For the fourth transition, from initial energy level n=3 to final energy level n=2.

\begin{aligned}{\lambda _4}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{3}}\right)}^2}}}}\right)}}\\&= 6.563\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{656}}{\mathbf{.3 nm}}\\\end{aligned}

Learn more:

1. Ranking of elements according to their first ionization energy.: <u>brainly.com/question/1550767 </u>

2. Chemical equation representing the first ionization energy for lithium.: <u>brainly.com/question/5880605 </u>

<u> </u>

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Atomic structure

Keywords: transition, hydrogen atom, energy difference, transition from n=6 to n=2, transition from n=5 to n=2, transition from n=4 to n=2, transition from n=3 to n=2, spectral lines, wavelength of spectral lines.

You might be interested in
How many molecules are there in 5H20?<br> A.5<br> B.7<br> C.10<br> D.11
Ad libitum [116K]

Answer:

the answers B which is 7

5 0
2 years ago
Acetylene (C2H2), an important fuel in welding, is produced in the laboratory when calcium carbide (CaC2) reacts with water: CaC
Anastaziya [24]

Answer:

There are 1.287 grams of acetylene collected

Explanation:

Total gas pressure = 909 mmHg

Vapor pressure of water = 20.7 mmHg

Pressure of acetylene = 909 mmHg - 20.7 mmHg = 888.3 mmHg

1mmHg = 1 torr

22 ° C + 273.15 = 295.15 Kelvin

Ideal gas law ⇒ pV = nRT

⇒ with p = pressure of the gas in atm

⇒ with V = volume of the gas in L

⇒ with n = amount of substance of gas ( in moles)

⇒ with R = gas constant, equal to the product of the Boltzmann constant and the Avogadro constant (62.36 L * Torr *K^−1 *mol^−1)

⇒ with T = absolute temperature of the gas (in Kelvin)

888.3 torr * 1.024 L = n * 62.36 L * Torr *K^−1 *mol^−1 * 295.15 K

n = 0.04942 moles of C2H2

Mass of C2H2 = 0.04942 moles x 26.04 g/mole = 1.287 g

There are 1.287 grams of acetylene collected

6 0
3 years ago
Are two atoms of the same element identical??​
Neko [114]
No. Although two such atoms are essentially chemically identical (they will chemically react in the same way), they are not completely identical.
3 0
3 years ago
The SI unit of weight is the same as that of force. What does this tell us about weight? Explain.
masya89 [10]

Answer:

It shows that weight is a form of force.

Explanation:

Basically, weight is the force exerted by your mass multiplied by the gravitational acceleration of the place you're standing in.

5 0
3 years ago
The mass of an electron is approximately equal to 1 over 1,836 of the mass of 1. a positron 2. a proton 3. an atom of helium 4.
lianna [129]
Hello!

It would be A, the proton.
5 0
3 years ago
Read 2 more answers
Other questions:
  • The vapor pressure of water at 25.0°c is 23.8 torr. determine the mass of glucose (molar mass = 180 g/mol) needed to add to 500.
    12·1 answer
  • In medical imaging, radioactive substances are sometimes used to help "see" parts of the body.
    6·1 answer
  • What is the mass number of an atom with 7 protons, 8 neutrons, and 7 electrons?
    11·2 answers
  • what if you scored a 0.80 on a test what. fraction of the test in simplest form did you answer correctly
    12·2 answers
  • How do purple stem plants use there energy
    12·2 answers
  • What is the volume of HCl gas required to react with excess magnesium metal to produce 6.82 L of hydrogen gas at 2.19 atm and 35
    10·1 answer
  • The vitamin ______ is one of the components of coenzyme a, which is involved in _____. pantothenic acid; carboxylation pantothen
    8·1 answer
  • The equation for photon energy, E, is E=hc/λ
    7·1 answer
  • What is transportation?
    8·2 answers
  • To insert a thermometer into an adapter, use choose. To prepare the thermometer. Then, hold the thermometer choose. The adapter
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!