1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
2 years ago
5

the spectral lines observed for hydrogen arise from transitions from excited states back to the n=2 principle quantum level. Cal

culate the wavelengths associated with the spectral transitions of the hydrogen atom from the n=6,5,4 and 3 to the n=2 level.
Chemistry
2 answers:
Sunny_sXe [5.5K]2 years ago
5 0

Rydberg formula is given by:

\frac{1}{\lambda } = R_{H}\times (\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}} )

where, R_{H} = Rydberg  constant = 1.0973731568508 \times 10^{7} per metre

\lambda = wavelength

n_{1} and n_{2} are the level of transitions.

Now, for n_{1}= 2 and n_{2}= 6

\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{6^{2}} )

= 1.0973731568508 \times 10^{7} \times (\frac{1}{4}-\frac{1}{36} )

= 1.0973731568508 \times 10^{7} \times (0.25-0.0278 )

= 1.0973731568508 \times 10^{7} \times 0.23

= 0.2523958\times 10^{7}

\lambda = \frac{1}{0.2523958\times 10^{7}}

= 3.9620\times 10^{-7} m

= 396.20\times 10^{-9} m

= 396.20 nm

Now, for n_{1}= 2 and n_{2}= 5

\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{5^{2}} )

= 1.0973731568508 \times 10^{7} \times (0.25-0.04 )

= 1.0973731568508 \times 10^{7} \times (0.21 )

= 0.230 \times  10^{7}

\lambda= \frac{1}{0.230 \times 10^{7}}

= 4.3478 \times 10^{-7} m

= 434.78\times 10^{-9} m

= 434.78 nm

Now, for n_{1}= 2 and n_{2}= 4

\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{4^{2}} )

=  1.0973731568508 \times 10^{7} \times (0.25-0.0625 )

= 1.0973731568508 \times 10^{7} \times (0.1875 )

= 0.20575 \times 10^{7}

\lambda= \frac{1}{0.20575 \times 10^{7}}

= 4.8602 \times 10^{-7} m

= 486.02 \times 10^{-9} m

= 486.02 nm

Now, for n_{1}= 2 and n_{2}= 3

\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{3^{2}} )

=  1.0973731568508 \times 10^{7} \times (0.25-0.12 )

=  1.0973731568508 \times 10^{7} \times (0.13 )

= 0.1426585\times 10^{7}

\lambda= \frac{1}{0.1426585\times 10^{7}}

= 7.0097 \times 10^{-7} m

= 700.97 \times 10^{-9} m

= 700.97 nm



eimsori [14]2 years ago
5 0

The wavelengths of spectral line observed in hydrogen atom are,

The value of wavelength of first spectral line from n=6 to n=2 is \boxed{{\text{410}}{\text{.2 nm}}}.

The value of wavelength of second spectral line from n=5 to n=2 is \boxed{{\text{434}}{\text{.1 nm}}} .

The value of wavelength of third spectral line from n=4 to n=2 is \boxed{{\text{486}}{\text{.2 nm}}} .

The value of wavelength of fourth spectral line from n=3 to n=2 is \boxed{{\text{656}}{\text{.3 nm}}} .

Further explanation:

Concept:

According to the Rydberg equation, the wavelength of spectral line related with the transition values as follows:

\frac{1}{\lambda }=\left( {{{\text{R}}_{\text{H}}}}\right)\left({\frac{1}{{{{\left({{{\text{n}}_{\text{f}}}}\right)}^2}}}-\frac{1}{{{{\left({{{\text{n}}_{\text{i}}}}\right)}^2}}}}\right)                       …… (1)

Here, \lambda is the wavelength of spectral line, {{\text{R}}_{\text{H}}}  is the Rydberg constant that has the value 1.097\times{10^7}{\text{ }}{{\text{m}}^{-1}} , {{\text{n}}_{\text{i}}}  is the initial energy level of transition, and {{\text{n}}_{\text{f}}}  is the final energy level of transition.

Therefore, after rearrangement of equation (1) \lambda can be calculated as,

\lambda=\frac{1}{{\left({1.097\times {{10}^7}{\text{ }}{{\text{m}}^{-1}}}\right)\left( {\frac{1}{{{{\left({{{\text{n}}_{\text{f}}}}\right)}^2}}}-\frac{1}{{{{\left({{{\text{n}}_{\text{i}}}}\right)}^2}}}}\right)}}                       …… (2)

Solution:

Finding the wavelength of spectral lines in each transition.

1. For the first transition, from initial energy level n=6 to final energy level n=2.

\begin{aligned}{\lambda _1}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{6}}\right)}^2}}}}\right)}}\\&= 4.102\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{410}}{\mathbf{.2 nm}}\\\end{aligned}

2. For the second transition, from initial energy level n=5 to final energy level n=2.

\begin{aligned}{\lambda _2}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{5}}\right)}^2}}}}\right)}}\\&= 4.341\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{434}}{\mathbf{.1 nm}}\\\end{aligned}

3. For the third transition, from initial energy level n=4 to final energy level n=2.

\begin{aligned}{\lambda _3}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{4}}\right)}^2}}}}\right)}}\\&= 4.862\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{486}}{\mathbf{.2 nm}}\\\end{aligned}

4. For the fourth transition, from initial energy level n=3 to final energy level n=2.

\begin{aligned}{\lambda _4}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{3}}\right)}^2}}}}\right)}}\\&= 6.563\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{656}}{\mathbf{.3 nm}}\\\end{aligned}

Learn more:

1. Ranking of elements according to their first ionization energy.: <u>brainly.com/question/1550767 </u>

2. Chemical equation representing the first ionization energy for lithium.: <u>brainly.com/question/5880605 </u>

<u> </u>

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Atomic structure

Keywords: transition, hydrogen atom, energy difference, transition from n=6 to n=2, transition from n=5 to n=2, transition from n=4 to n=2, transition from n=3 to n=2, spectral lines, wavelength of spectral lines.

You might be interested in
romeo is upset that he'll no longer be able yo see juliet, but this living creature will be able to see her, be near her, even f
Lyrx [107]

Answer:

beautiful and beautiful home on

8 0
3 years ago
Read 2 more answers
Use standard reduction potentials to calculate the equilibrium constant for the reaction: 2Cr3+(aq) + Pb(s)2Cr2+(aq) + Pb2+(aq)
inn [45]

Answer:

3.47 ×10^-10

Explanation:

The equation of the reaction is 2Cr3+(aq) + Pb(s)------->2Cr2+(aq) + Pb2+(aq)

A total of two moles of electrons were transferred in the process. The chromium was reduced while the lead was oxidized. Hence the lead species will constitute the oxidation half equation and the chromium will constitute the reduction half equation.

E°cell = E°cathode - E°anode

E°cathode = -0.41 V

E°anode = -0.13 V

E°cell = -0.41 -(-0.13) = -0.28 V

From

E°cell = 0.0592/n log K

n= 2, K= the unknown

-0.28 = 0.0592/2 log K

log K = -0.28/0.0296

log K = -9.4595

K = Antilog ( -9.4595)

K= 3.47 ×10^-10

4 0
3 years ago
Someone help me please.. I will mark as brainliest I promise...​
Kobotan [32]

Answer:

(a) proton

(b) neutron

(c) electron

particles in nucleus are proton and neutron.

atom is electrically neutral because no.of proton= no.of electron=6

5 0
2 years ago
How can we tell when something is polar or non-polar in an Inter-molecular Force?
Montano1993 [528]
If the substance mixes with water it's polar. If it doesn't it ms non polar.
7 0
3 years ago
What are the values of the missing forces?
bija089 [108]
A: 12 N
B: 150 N
C: 100 N
D: 150 N
E: 220 N
5 0
2 years ago
Other questions:
  • Which of the following is a product formed when Ag2O decomposes
    5·1 answer
  • 3.
    12·1 answer
  • A student drank a bottle of water during a car ride up a mountain. At the top of the mountain, the student capped the plastic bo
    9·1 answer
  • 1. Using a triple beam balance and a graduated cylinder, a student collected data on a sample of an
    11·1 answer
  • While investigating greenhouse gases, I measured 0.1875 grams of carbon dioxide in a 500-gram sample of the atmosphere. What is
    10·1 answer
  • Which suitable reagent distinguishes ketones and aldehydes from carboxylic acids and on observation, gives a white precipitate??
    5·2 answers
  • A small, hard-shelled fossil that resembles a modern-day ocean organism was found
    15·1 answer
  • The volume of a gas is 400 mL when the pressure is 1 atm. At the same temperature, what is the pressure at which the volume of t
    15·1 answer
  • Which is an example of a bioresource used to build a home?
    11·1 answer
  • What are some questions you would ask to learn more about the toxic algal bloom in Lake Temescal? Include at least two questions
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!