1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
3 years ago
5

the spectral lines observed for hydrogen arise from transitions from excited states back to the n=2 principle quantum level. Cal

culate the wavelengths associated with the spectral transitions of the hydrogen atom from the n=6,5,4 and 3 to the n=2 level.
Chemistry
2 answers:
Sunny_sXe [5.5K]3 years ago
5 0

Rydberg formula is given by:

\frac{1}{\lambda } = R_{H}\times (\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}} )

where, R_{H} = Rydberg  constant = 1.0973731568508 \times 10^{7} per metre

\lambda = wavelength

n_{1} and n_{2} are the level of transitions.

Now, for n_{1}= 2 and n_{2}= 6

\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{6^{2}} )

= 1.0973731568508 \times 10^{7} \times (\frac{1}{4}-\frac{1}{36} )

= 1.0973731568508 \times 10^{7} \times (0.25-0.0278 )

= 1.0973731568508 \times 10^{7} \times 0.23

= 0.2523958\times 10^{7}

\lambda = \frac{1}{0.2523958\times 10^{7}}

= 3.9620\times 10^{-7} m

= 396.20\times 10^{-9} m

= 396.20 nm

Now, for n_{1}= 2 and n_{2}= 5

\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{5^{2}} )

= 1.0973731568508 \times 10^{7} \times (0.25-0.04 )

= 1.0973731568508 \times 10^{7} \times (0.21 )

= 0.230 \times  10^{7}

\lambda= \frac{1}{0.230 \times 10^{7}}

= 4.3478 \times 10^{-7} m

= 434.78\times 10^{-9} m

= 434.78 nm

Now, for n_{1}= 2 and n_{2}= 4

\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{4^{2}} )

=  1.0973731568508 \times 10^{7} \times (0.25-0.0625 )

= 1.0973731568508 \times 10^{7} \times (0.1875 )

= 0.20575 \times 10^{7}

\lambda= \frac{1}{0.20575 \times 10^{7}}

= 4.8602 \times 10^{-7} m

= 486.02 \times 10^{-9} m

= 486.02 nm

Now, for n_{1}= 2 and n_{2}= 3

\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{3^{2}} )

=  1.0973731568508 \times 10^{7} \times (0.25-0.12 )

=  1.0973731568508 \times 10^{7} \times (0.13 )

= 0.1426585\times 10^{7}

\lambda= \frac{1}{0.1426585\times 10^{7}}

= 7.0097 \times 10^{-7} m

= 700.97 \times 10^{-9} m

= 700.97 nm



eimsori [14]3 years ago
5 0

The wavelengths of spectral line observed in hydrogen atom are,

The value of wavelength of first spectral line from n=6 to n=2 is \boxed{{\text{410}}{\text{.2 nm}}}.

The value of wavelength of second spectral line from n=5 to n=2 is \boxed{{\text{434}}{\text{.1 nm}}} .

The value of wavelength of third spectral line from n=4 to n=2 is \boxed{{\text{486}}{\text{.2 nm}}} .

The value of wavelength of fourth spectral line from n=3 to n=2 is \boxed{{\text{656}}{\text{.3 nm}}} .

Further explanation:

Concept:

According to the Rydberg equation, the wavelength of spectral line related with the transition values as follows:

\frac{1}{\lambda }=\left( {{{\text{R}}_{\text{H}}}}\right)\left({\frac{1}{{{{\left({{{\text{n}}_{\text{f}}}}\right)}^2}}}-\frac{1}{{{{\left({{{\text{n}}_{\text{i}}}}\right)}^2}}}}\right)                       …… (1)

Here, \lambda is the wavelength of spectral line, {{\text{R}}_{\text{H}}}  is the Rydberg constant that has the value 1.097\times{10^7}{\text{ }}{{\text{m}}^{-1}} , {{\text{n}}_{\text{i}}}  is the initial energy level of transition, and {{\text{n}}_{\text{f}}}  is the final energy level of transition.

Therefore, after rearrangement of equation (1) \lambda can be calculated as,

\lambda=\frac{1}{{\left({1.097\times {{10}^7}{\text{ }}{{\text{m}}^{-1}}}\right)\left( {\frac{1}{{{{\left({{{\text{n}}_{\text{f}}}}\right)}^2}}}-\frac{1}{{{{\left({{{\text{n}}_{\text{i}}}}\right)}^2}}}}\right)}}                       …… (2)

Solution:

Finding the wavelength of spectral lines in each transition.

1. For the first transition, from initial energy level n=6 to final energy level n=2.

\begin{aligned}{\lambda _1}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{6}}\right)}^2}}}}\right)}}\\&= 4.102\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{410}}{\mathbf{.2 nm}}\\\end{aligned}

2. For the second transition, from initial energy level n=5 to final energy level n=2.

\begin{aligned}{\lambda _2}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{5}}\right)}^2}}}}\right)}}\\&= 4.341\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{434}}{\mathbf{.1 nm}}\\\end{aligned}

3. For the third transition, from initial energy level n=4 to final energy level n=2.

\begin{aligned}{\lambda _3}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{4}}\right)}^2}}}}\right)}}\\&= 4.862\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{486}}{\mathbf{.2 nm}}\\\end{aligned}

4. For the fourth transition, from initial energy level n=3 to final energy level n=2.

\begin{aligned}{\lambda _4}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{3}}\right)}^2}}}}\right)}}\\&= 6.563\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{656}}{\mathbf{.3 nm}}\\\end{aligned}

Learn more:

1. Ranking of elements according to their first ionization energy.: <u>brainly.com/question/1550767 </u>

2. Chemical equation representing the first ionization energy for lithium.: <u>brainly.com/question/5880605 </u>

<u> </u>

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Atomic structure

Keywords: transition, hydrogen atom, energy difference, transition from n=6 to n=2, transition from n=5 to n=2, transition from n=4 to n=2, transition from n=3 to n=2, spectral lines, wavelength of spectral lines.

You might be interested in
What happens when the electron moves from the first energy level to the second energy level?
STatiana [176]
If an electron moves up from the first orbit to the higher energy levels, energy will be absorbed by the electron itself and no emission line produced.
But if it moves from the orbits 6,5,4 and 3 to orbit 2, energy will be released by the electron and different emission lines wll be produced.
5 0
3 years ago
Read 2 more answers
What Is the answers?
Yuki888 [10]

Answer:

oxygen is responsible for rusting

5 0
2 years ago
Read 2 more answers
How to atoms form a new substance
marin [14]

Answer:

they join together

Explanation:

6 0
3 years ago
Read 2 more answers
What force must act on a 150 kg mass to give it an acceleration of 30 m/s squared? F=ma
Helga [31]

Answer:

its 120

Explanation:

i did it :)

4 0
2 years ago
A 10.0 mL sample of 0.25 M NaOH(aq) is titrated with 0.10 M HCl(aq) (adding HCl to NaOH). Determine which region on the titratio
Anna11 [10]

Answer:

1) After adding 15.0 mL of the HCl solution, the mixture is before the equivalence point on the titration curve.

2) The pH of the solution after adding HCl is 12.6

Explanation:

10.0 mL of 0.25 M NaOH(aq) react with 15.0 mL of 0.10 M HCl(aq). Let's calculate the moles of each reactant.

nNaOH=\frac{0.25mol}{L} .10.0 \times 10^{-3} L=2.5 \times 10^{-3}mol

nHCl=\frac{0.10mol}{L} \times 15.0 \times 10^{-3} L=1.5 \times 10^{-3}mol

There is an excess of NaOH so the mixture is before the equivalence point. When HCl completely reacts, we can calculate the moles in excess of NaOH.

                    NaOH       +       HCl       ⇒       NaCl      +         H₂O

Initial          2.5 × 10⁻³         1.5 × 10⁻³               0                      0

Reaction    -1.5 × 10⁻³        -1.5 × 10⁻³          1.5 × 10⁻³          1.5 × 10⁻³

Final            1.0 × 10⁻³               0                 1.5 × 10⁻³          1.5 × 10⁻³

The concentration of NaOH is:

[NaOH]=\frac{1.0 \times 10^{-3} mol }{25.0 \times 10^{-3} L} =0.040M

NaOH is a strong base so [OH⁻] = [NaOH].

Finally, we can calculate pOH and pH.

pOH = -log [OH⁻] = -log 0.040 = 1.4

pH = 14 - pOH = 14 - 1.4 = 12.6

5 0
3 years ago
Other questions:
  • How does the melting of glaciers affect the density of water at the earth's poles?
    14·1 answer
  • Three of the following statements are wrong. One is correct. Which of the following statements is correct?
    6·1 answer
  • How are the number of protons represented in the periodic table?
    14·2 answers
  • If the specific heat capacity of water is 4.19 J/(g⋅K), how much energy would be required to raise the temperature of 100.0 g of
    9·1 answer
  • (BRAINLIEST AWARD!! LAST QUESTION!!) Jean-Baptiste Lamarck's theory of evolution stated that an organism could pass on to its of
    12·1 answer
  • If the length of a cube is 2.5 cm, the width is 2.5 cm, the height is 2.5 cm and the mass of the
    14·1 answer
  • Define friction in your own words
    10·1 answer
  • GUYS I NEED HELP WITH THIS ASSIGNMENT MY LAST ASSIGNMENT FOR THE DAY
    5·1 answer
  • Which graph above shows an object’s acceleration?
    10·2 answers
  • What is the pressure ?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!