2.75 x 10^24
Hope this helped :)
Answer:
In physics, the kinetic energy of an object is the energy that it possesses due to its motion It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity Having gained this energy during its acceleration the body maintains this kinetic energy unless its speed changes
Example:
A semi-truck travelling down the road
A river flowing at a certain speed
<span>We can use the heat
equation,
Q = mcΔT </span>
<span>
Where Q is the amount of energy transferred (J), m is
the mass of the substance (kg), c is the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is the temperature
difference (°C).</span>
According to the given data,
Q = 300 J
m = 267 g
<span>
c = ?
ΔT = 12 °C</span>
By applying the
formula,
<span>300 J = 267 g x c x
12 °C
c = 0.0936 J g</span>⁻¹ °C⁻<span>¹
Hence, specific heat of the given substance is </span>0.0936 J g⁻¹ °C⁻¹.
Because the gravity levels decrese and so does the oxygen levels
On the bottom
1. sharing electrons
2. the middle two dots between the F:F