1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kozerog [31]
3 years ago
15

A basketball weighing 0.63 kg is dropped from a height of 6.0 meters onto a court. Use the conservation of energy equation to de

termine the velocity of the ball at a height of 2.0 meters above the court.
Physics
1 answer:
frutty [35]3 years ago
7 0

Answer:

The velocity of the ball at a height of 2.0 meters above the court is approximately 8.85 m/s

Explanation:

The given parameters of the ball are;

The mass of the ball, m = 0.63 kg

The height from which the ball is dropped, h₁ = 6.0 meters

The height at which the velocity of the ball is sought, h₂ = 2 meters

The initial potential energy of the ball, P.E. = m·g·h₁ = 0.63 × 9.8 × 6.0  = 37.044

The initial potential energy of the ball, P.E.₁ = 37.044 J

The potential energy of the ball, when the ball is at 2 meters above the court, P.E.₂ = m·g·h₂ = 0.63 × 9.8 × 2.0 = 12.348

The potential energy of the ball, when the ball is at 2 meters above the court, P.E.₂ = 12.348 J

From M.E> = P.E. + K.E.

Where;

M.E = The total mechanical energy of the ball = Constant

P.E. = The potential energy of the ball

K.E. = The kinetic energy of the ball

By the conservation of energy principle, we have;

The potential energy lost by the ball = The kinetic energy gained by the ball

The potential energy lost by the ball = P.E.₁ - P.E.₂ = 37.044 - 12.348 = 24.696

The potential energy lost by the ball = 24.696 J

The kinetic energy gained by the ball = 1/2·m·v² = 1/2×0.63×v²

Where;

v = The velocity of the ball

∴ The potential energy lost by the ball at 2.0 meters above the court = 24.696 J = The kinetic energy gained by the ball at 2.0 meters above the court = 1/2×0.63×v²

24.696 J = 1/2×0.63 kg ×v²

v² = 24.696 J / (1/2×0.63 kg) = 78.4 m²/s²

∴ v = √(78.4 m²/s²) = 8.85437744847 m/s

The velocity of the ball at a height of 2.0 meters above the court, v ≈ 8.85 m/s.

You might be interested in
Determine the average value of the translational kinetic energy of the molecules of an ideal gas at (a) 27.8°C and (b) 143°C. Wh
Alinara [238K]

Answer:

a) k_{avg}=6.22\times 10^{-21}

b) k_{avg}=8.61\times 10^{-21}

c)  k_{mol}=3.74\times 10^{3}J/mol

d)   k_{mol}=5.1\times 10^{3}J/mol

Explanation:

Average translation kinetic energy (k_{avg}) is given as

k_{avg}=\frac{3}{2}\times kT    ....................(1)

where,

k = Boltzmann's constant ; 1.38 × 10⁻²³ J/K

T = Temperature in kelvin

a) at T = 27.8° C

or

T = 27.8 + 273 = 300.8 K

substituting the value of temperature in the equation (1)

we have

k_{avg}=\frac{3}{2}\times 1.38\times 10^{-23}\times 300.8  

k_{avg}=6.22\times 10^{-21}J

b) at T = 143° C

or

T = 143 + 273 = 416 K

substituting the value of temperature in the equation (1)

we have

k_{avg}=\frac{3}{2}\times 1.38\times 10^{-23}\times 416  

k_{avg}=8.61\times 10^{-21}J

c ) The translational kinetic energy per mole of an ideal gas is given as:

       k_{mol}=A_{v}\times k_{avg}

here   A_{v} = Avagadro's number; ( 6.02×10²³ )

now at T = 27.8° C

        k_{mol}=6.02\times 10^{23}\times 6.22\times 10^{-21}

          k_{mol}=3.74\times 10^{3}J/mol

d) now at T = 143° C

        k_{mol}=6.02\times 10^{23}\times 8.61\times 10^{-21}

          k_{mol}=5.1\times 10^{3}J/mol

8 0
3 years ago
If a marathon runner averages 9.51 mi/hr, how long does it take him to run a 26.220-mile marathon. Express your answers in hours
ASHA 777 [7]

Explanation:

Speed of the marathon runner, v = 9.51 mi/hr

Distance covered by the runner, d = 26.220 mile

Let t is the time taken by the marathon runner. We know that the speed of the runner is given by total distance divided by total time taken. Mathematically, it is given by :

v=\dfrac{d}{t}

t=\dfrac{d}{v}

t=\dfrac{26.220\ mi}{9.51\ mi/hr}

t = 2.75 hours

Since, 1 hour = 60 minutes

t = 165 minutes

Since, 1 minute = 60 seconds

t = 9900 seconds

Hence, this is the required solution.

7 0
3 years ago
If you quadruple the temperature of a black body, by what factor will the total energy radiated per second per square meter incr
Anastaziya [24]
Radiant heat transfer is proportional to the 4-th power of absolute temperature.
Therefore if the temperature is quadrupled, the radiant heat energy will increase by a factor of
4⁴ = 256

Answer: 256
8 0
3 years ago
Plz, Help!!
SIZIF [17.4K]
C is the first & the second question is A
7 0
3 years ago
Read 2 more answers
Can someone give me tips for science camp!! Please
Kamila [148]
Try to have a calm morning before camp. A good night’s sleep and a good breakfast. Make sure to be cautious, follow all the rules for certain areas ( some maybe restricted ). Take lots of photos doing wacky stuff! Learn but have fun learning
5 0
2 years ago
Read 2 more answers
Other questions:
  • How fast must a cyclist climb a 6.0º hill to maintain a power output of 0.25 hp? Neglect work done by friction, and assume the m
    6·1 answer
  • Anything that moves up and down or back and forth in a rhythmic way is vibrating true false
    11·2 answers
  • The tired of a car support the weight of a stationary. If onetire has a slow leak, the air pressure within the tire will_____wit
    14·1 answer
  • What is NOT a major factor affecting climate?
    9·1 answer
  • You could use an elevator or stairs to lift a box to the tenth floor. Which has greater energy? Why?
    15·1 answer
  • 4. Analyze: What can you say about the acceleration of dividers when the pressure increases
    5·1 answer
  • ¿A que velocidad viaja la luz?
    5·2 answers
  • Consider a diffraction grating of width 5cm with slits of width 0.0001 cm separated by distance of 0.0002cm 1:what is the corres
    5·1 answer
  • Which of the following provides alternating current? Select all that apply.
    11·1 answer
  • A trout jumps, producing waves on the surface of a 0.8-mdeep mountain stream. If it is observed that the waves do not travel ups
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!