Answer:
Steel and cast iron
Explanation:
They are all metal but assuming that you are finding the best material for your pan i suggest going for steel or cast iron
<u>Answer:</u> The specific heat of metal is 0.821 J/g°C
<u>Explanation:</u>
When metal is dipped in water, the amount of heat released by metal will be equal to the amount of heat absorbed by water.

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of metal = 30 g
= mass of water = 100 g
= final temperature = 25°C
= initial temperature of metal = 110°C
= initial temperature of water = 20.0°C
= specific heat of metal = ?
= specific heat of water = 4.186 J/g°C
Putting values in equation 1, we get:
![30\times c_1\times (25-110)=-[100\times 4.186\times (25-20)]](https://tex.z-dn.net/?f=30%5Ctimes%20c_1%5Ctimes%20%2825-110%29%3D-%5B100%5Ctimes%204.186%5Ctimes%20%2825-20%29%5D)

Hence, the specific heat of metal is 0.821 J/g°C
Answer:
17 protons, 20 neutrons, and 17 electrons.
Explanation:
A periodic table can be defined as the standard arrangement of chemical elements by atomic number, electronic configuration and chemical properties in a tabular form.
Generally, a proper representation of the mass number and atomic number of chemical elements is key and very important in chemistry.
Furthermore, as a rule, it should be noted that the mass number (nucleon number) is always larger than the atomic number(number of proton).
The mass number of this neutral atom of Cl-37 is 37 and we know that the atomic number (number of protons) of chlorine is 17. Also, the atomic number of an element is equal to the number of its electrons.
A neutral atom of Cl-37 has 17 protons, 20 neutrons, and 17 electrons.
Hence, a neutral atom of Cl-37 can be identified based on its number of protons because it represent its atomic number, which is what is used to differentiate an atom of an element from the atom of another chemical element.
Answer:
mgh is the formula for potential energy