Answer:
The equation is Fe₂O₃ + CO ⇒ Fe + CO₂.
The balanced reaction equation is Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂.
Explanation:
First, we have to write our equation. It's actually pretty straightforward - first we look for our reactants (looks like it's Fe₂O₃ and CO), then we look for our products (Fe and CO₂). Then, we have to balance it so that both sides have the same number of both element.
Currently, we have the equation Fe₂O₃ + CO ⇒ Fe + CO₂. There are 2 Fe atoms, 4 O atoms, and 1 C atom on the left side. There is 1 Fe atom, 2 O atoms, and 1 C atom on the right side.
First thing we can do is give our Fe on the right side a coefficient of 2. This will make it equivalent to the 2 Fe atoms on the left side:
Fe₂O₃ + CO ⇒ 2Fe + CO₂
Next, we need to make sure that we have the same number of C and O atoms on each side. This takes a little bit of thinking, but what we have to do is give CO a coefficient of 3 and CO₂ a coefficient of 3. This gives us 6 O atoms on the left side (when we include the O₃) and 6 O atoms on the right side (since there are 3 O₂ atoms and 3 times 2 is 6). Here's what that looks like:
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
And that's how I balanced the equation. It can be confusing, but with enough practice, it will get easier and easier. :)
The <span>simple machine found on the head of the ax is </span>Wedge. A wedge is an inclined plane that can be moved. When an ax is used
to split wood, the ax handle
exerts a force on the blade of
the axe, which is the wedge. That force pushes the wedge
down into the wood. The wedge in turn exerts an
output force splitting the wood in two.
Answer: A. Most radiation reaching Earth from space is blocked by the atmosphere. Therefore, some telescopes must be placed above the atmosphere.
Explanation: Astronomers have a huge problem detecting radiation from space because the Earth's atmosphere blocks most of it and stops it from reaching the surface.
Hope this helps :)
<span><span><span>
D- coal-burning stove </span>is the correct answer</span></span>