Answer:
E = 16.464 J
Explanation:
Given that,
Mass of tetherball, m = 0.8 kg
It is hit by a child and rises 2.1 m above the ground, h = 21. m
We need to find the maximum gravitational potential energy of the ball. The formula for the gravitational potential energy is given by :
E = mgh
g is acceleration due to gravity
E = 0.8 kg × 9.8 m/s² × 2.1 m
= 16.464 J
So, the maximum potential energy of the ball is 16.464 J.
The time elapsed since you stopped the stopwatch is 0.41 s.
<em>Your question is not complete, it seems to be missing the following information;</em>
"The velocity of the ant is 2 m/s"
The given parameters;
- velocity of the ant, v = 2 m/s
- change in position of the ant, Δx = 0.81 m
- time when the ant was noticed, = t₂
Velocity is defined as the change in displacement per change in time of motion of an object.

The time elapsed since you stopped the stopwatch is calculated as;

Thus, the time elapsed since you stopped the stopwatch is 0.41 s.
Learn more here: brainly.com/question/18153640
The first law of thermodynamics states the conservation of energy and heat where the total energy in an isolated system may be transformed into another, but never created or destroyed. If 314 J of energy was released to the room, then also 314 J of energy was also removed from food in that refrigerator assuming it is an isolated system. <span>
</span>
Answer:
c. P₁/T₁=P₂/T₂
Explanation:
neither Avogadro’s, Charles’, or Boyle’s law formula can be used, since some parameters like volume is not given,
to find P₂, given P₁, T₁, and T₂ we will therefore use Gay-lussac's law.
gay lussacs law state that, provided volume is kept constant, pressure is directly proportional to temperature.
the volume volume is said to be filled, i.e its is kept constants when temperature is change