Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
Answer:
Bus travels 160 km in 4 hours
Speed of bus = 160/4 = 40 km/hr
Train travels 320 km in 5 hours
Speed of train = 320/5 = 64 km/hr
In one hour, bus travels 40 km and train travels 64 km.
Ratio = 40:64 = 5:8
The answer is, C. the wavelength is measured in parallel to the direction of the wave, at any point, under the same repetition for any type of wave.
Explanation:
It is given that,
Uncertainty in the speed of an electron, 
According to Heisenberg uncertainty principle,

is the uncertainty in the position of an electron
Since, 



So, the uncertainty in its position is
. Hence, this is the required solution.
The lemon trees will always be the same so they are the constants. The independent variable is the water amount because it is changing. The dependent variable is the amount of lemons because it is the variable being tested. (If we change the amount of water how many lemons will be produced?)