1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].
Answer:
x= 9.53 ounces
Explanation:
Given that
Mean ,μ= 9 ounces
Standard deviation ,σ=0.8 ounces
He wants to sell only those potatoes that are among the heaviest 25%.
P=25% = 0.25
When P= 0.25 then Z=0.674
Lest take x is the the minimum weight required to be brought to the farmer's market.
We know that
x = Z . σ + μ
x= 0.674 ₓ 0.8 + 9 ounces
x= 9.53 ounces
The statement about pointwise convergence follows because C is a complete metric space. If fn → f uniformly on S, then |fn(z) − fm(z)| ≤ |fn(z) − f(z)| + |f(z) − fm(z)|, hence {fn} is uniformly Cauchy. Conversely, if {fn} is uniformly Cauchy, it is pointwise Cauchy and therefore converges pointwise to a limit function f. If |fn(z)−fm(z)| ≤ ε for all n,m ≥ N and all z ∈ S, let m → ∞ to show that |fn(z)−f(z)|≤εforn≥N andallz∈S. Thusfn →f uniformlyonS.
2. This is immediate from (2.2.7).
3. We have f′(x) = (2/x3)e−1/x2 for x ̸= 0, and f′(0) = limh→0(1/h)e−1/h2 = 0. Since f(n)(x) is of the form pn(1/x)e−1/x2 for x ̸= 0, where pn is a polynomial, an induction argument shows that f(n)(0) = 0 for all n. If g is analytic on D(0,r) and g = f on (−r,r), then by (2.2.16), g(z) =
Answer:
437.5Kjoules
Explanation:
K.E=half multiply by mass multiply by square of velocity
=437.5Kjoules
The molar mass of ammonium sulphate [(NH4)2SO4] is 132.17 g (option E). Details about molar mass can be found below.
<h3>How to calculate molar mass?</h3>
The molar mass of a substance can be calculated by adding the atomic masses of the elements in the compound.
According to this question, the atomic mass of nitrogen is given as 14.01, hydrogen is 1.01, sulfur is 32.07, and oxygen is 16.00.
The molar mass of ammonium sulphate is as follows:
[(NH4)2SO4] = [14.01 + 1(4)]2 + 32.07 + 16.00(4)
= 36.02 + 32.07 + 64
= 132.09
Therefore, the molar mass of ammonium sulphate [(NH4)2SO4] is 132.17 g.
Learn more about molar mass at: brainly.com/question/12127540
#SPJ1