Answer:
dilute solution
A solution containing less solute than the equilibrium amount is called a dilute solution. The solvent has a limited capacity to dissolve a solute.
Explanation:
Answer:
D It must be equal to 1.00
Explanation:
The refraction in the second medium must be equal to 1. The refraction index is given as the ration of the angle of incidence to the angle of refraction. This is given as a fraction. In other words:

where Θ₁ and Θ₂ are angles of incidence an refraction, and n is the refractive index.
At a critical angle, the refraction is equal to the reflection inside the medium. This results in a phenomenon called total internal reflection where light is reflected internally in the medium.
Answer:
10.52g KOH
Explanation:
250.0 ml X 1L/1000ml X 0.75 mol KOH/1L X 56.105gKOH/1 mol KOH =10.52g KOH
Answer:

Explanation:
The first step is the <u>calculation of the moles</u> of
and
, so:


Now, in 1 mol of CO2 we have 1 mol of C and in 1 mol of
we have 1 mol of H. Additionally, if we want to calculate the moles of oxygen we need to <u>calculate the grams of C and O</u> and then do the <u>substraction</u> form the initial amount, so:


Now we can <u>convert the grams</u> of O to moles, so:

The next step is to divide all the mol values by the <u>smallest one</u>:



Therefore the formula is 
Answer:
59.077 kJ/mol.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₂ = 3k₁ , Ea = ??? J/mol, R = 8.314 J/mol.K, T₁ = 294.0 K, T₂ = 308.0 K.
ln(3k₁/k₁) = (Ea / 8.314 J/mol.K) [(308.0 K - 294.0 K) / (294.0 K x 308.0 K)]
∴ ln(3) = 1.859 x 10⁻⁵ Ea
∴ Ea = ln(3) / (1.859 x 10⁻⁵) = 59.077 kJ/mol.