Answer:
Because they are different oxides.
Explanation:
In both processes they are involve Iron Oxides, but in the case of Ellingham diagrams, it is consider the Iron in combination with oxygen to form FeO, so the melting point is around 1600 ºC. In the case of blast furnace, the Fe that is present in the ores, are primary the hematite (Fe2O3) and the magnetite (Fe3O4).
Answer:
Coefficient
Explanation:
I am not that sure, but just wanted to help.
Answer:
29.42 Litres
Explanation:
The general/ideal gas equation is used to solve this question as follows:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K
According to the information provided in this question;
mass of nitrogen gas (N2) = 25g
Pressure = 0.785 atm
Temperature = 315K
Volume = ?
To calculate the number of moles (n) of N2, we use:
mole = mass/molar mass
Molar mass of N2 = 14(2) = 28g/mol
mole = 25/28
mole = 0.893mol
Using PV = nRT
V = nRT/P
V = (0.893 × 0.0821 × 315) ÷ 0.785
V = 23.09 ÷ 0.785
V = 29.42 Litres
Answer:
Final temperature = 83.1 °C
Explanation:
Given data:
Mass of concrete = 25 g
Specific heat capacity = 0.210 cal/g. °C
Initial temperature = 25°C
Calories gain = 305 cal
Final temperature = ?
Solution:
Q = m. c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
305 cal = 25 g ×0.210 cal/g.°C × T2 - 25°C
305 cal = 5.25cal/°C × T2 - 25°C
305 cal / 5.25cal/°C = T2 - 25°C
58.1 °C = T2 - 25°C
T2 = 58.1 °C + 25°C
T2 = 83.1 °C
<span>Boyle's Law is k = PV so
Initial k = 13.0 L x 4.0 atm = 52 L atm
Final kf = 6.5 L x 8 atm = 52 L atm
The gas obeys Boyle's Law
The answer with two significant figures separated by a comma is k = 52, kf = 52.</span>