1. medial
2.superior
3. inferior
4.lateral
5.inferior
Answer: 316.8 g CrSO3
Explanation: Solution:
2.4 moles CrSO3 x 132 g CrSO3 / 1 mole CrSO3 = 316.8 g CrSO4
The conversion factor is 1 mole of CrSO4 is equal to its molar mass which is 132 g CrSO3
Answer;
d. the specific geometry and types of amino acids in the active site
Explanation;
-Enzymes are highly selective catalysts, meaning that each enzyme only speeds up a specific reaction. The molecules that an enzyme works with are called substrates. The substrates bind to a region on the enzyme called the active site.
-For a substrate to bind to the active site of an enzyme it must fit in the active site and be chemically attracted to it. The shape of an enzyme determines how it works. Enzymes have active sites that substrate molecules (the substances involved in the chemical reaction) fit into when a reaction happens.
The end product will depend upon
a) the amount of the reagent taken
b) the final treatment of the reaction
If we have just taken methylmagnesium iodide and p-hydroxyacetophenone, then we will get methane and hydroxyl group substituted with MgI in place of hydrogen
Figure 1
However if we have taken excess of methylmagnesium iodide which is Grignard's reagent followed by hydrolysis we will get different product
Figure 2
Answer:
3. 3.45×10¯¹⁸ J.
4. 1.25×10¹⁵ Hz.
Explanation:
3. Determination of the energy of the photon.
Frequency (v) = 5.2×10¹⁵ Hz
Planck's constant (h) = 6.626×10¯³⁴ Js
Energy (E) =?
The energy of the photon can be obtained by using the following formula:
E = hv
E = 6.626×10¯³⁴ × 5.2×10¹⁵
E = 3.45×10¯¹⁸ J
Thus, the energy of the photon is 3.45×10¯¹⁸ J
4. Determination of the frequency of the radiation.
Wavelength (λ) = 2.4×10¯⁵ cm
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
Next, we shall convert 2.4×10¯⁵ cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
2.4×10¯⁵ cm = 2.4×10¯⁵ cm × 1 m /100 cm
2.4×10¯⁵ cm = 2.4×10¯⁷ m
Thus, 2.4×10¯⁵ cm is equivalent to 2.4×10¯⁷ m
Finally, we shall determine the frequency of the radiation by using the following formula as illustrated below:
Wavelength (λ) = 2.4×10¯⁷ m
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
v = c / λ
v = 3×10⁸ / 2.4×10¯⁷
v = 1.25×10¹⁵ Hz
Thus, the frequency of the radiation is 1.25×10¹⁵ Hz.