Start by adding the numbers then divide
Answer:
pH 
Explanation:
For every mole of hydrochloric acid, one mole of hydronium ion is required. Thus, in order to neutralize 0.014 moles of HCL, 0.014 moles of hydronium is required.
![[H_3O^+] = [HCl] = 0.014](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%3D%20%5BHCl%5D%20%3D%200.014)
pH ![= -log [H^+] = -log [H_3O^+]](https://tex.z-dn.net/?f=%3D%20-log%20%5BH%5E%2B%5D%20%3D%20-log%20%5BH_3O%5E%2B%5D)
Substituting the available values in above equation, we can say that the pH of the solution is equal to

pH 
pH of a
M HCL solution 
Answer:
pH of resulting solution = 7.98
Explanation:
The balanced equation
HA + NaOH - Na+ + A- + H2O
Number of moles of A = Number of moles of HA = Number of moles of NaOH
= 35.8/1000 * 0.020 = 0.000716 mol
Initial concentration of A = 0.000716/0.0608 = 0.01178 M
pKb = 14 – pKa = 14 -3.9 = 10.1
Kb = 10^{-Kb} = 10^{-10.1} = 7.943 * 10^-11
Kb = [HA][OH-]/[A-]
Kb = a^2/(0.01178 -a) = 7.943 * 10^-11
a^2 + 7.943 * 10^-11 a – 9.357 * 10^-13 = 0
a = 9.673 * 10^-7
OH- = a = 9.673 * 10^-7 M
pOH = -log [OH-] = -log (9.673 * 10^-7) = 6.02
pH = 14-6.02 = 7.98
Answer:
Percent Composition
1. Find the molar mass of all the elements in the compound in grams per mole.
2. Find the molecular mass of the entire compound.
3. Divide the component's molar mass by the entire molecular mass.
4. You will now have a number between 0 and 1. Multiply it by 100% to get percent composition.