Answer:
-The other substances that give a positive test with AgNO3 are other chlorides present, iodides and bromide.
-It is reasonable to exclude iodides and bromides but it is not reasonable to exclude other chlorides
Explanation:
In the qualitative determination of halogen ions, silver nitrate solution(AgNO3) is usually used. Now, various halide ions will give various colours of precipitate when mixed with with silver nitrate. For example, chlorides(Cl-) normally yield a white precipitate, bromides(Br-) normally yield a cream precipitate while iodides (I-) normally yield a yellow precipitate. Thus, all these ions or some of them may be present in the system.
With that being said, if other chlorides are present, they will also yield a white precipitate just like KCl leading to a false positive test for KCl. However, since other halogen ions yield precipitates of different colours, they don't lead to a false test for KCl. Thus, we can exclude other halides from the tendency to give us a false positive test for KCl but not other chlorides.
The answer is B. the occurrence of huge events in Earth's natural history
The geologic time scale is a system of chronological dating that relates geological strata to time. It is used by geologists, paleontologists, and other Earth scientists to describe the timing and relationships of events that have occurred during Earth's history.
<u>Answer:</u> The force that must be applied is 15 N.
<u>Explanation:</u>
Force exerted on the object is defined as the product of mass of the object and the acceleration of the object.
Mathematically,

where,
F = force exerted = ?
m = mass of the object = 3 kg
a = acceleration of the object = 
Putting values in above equation, we get:

Hence, the force that must be applied is 15 N.
First you calculate the pOH of the solution:
pH+ pOH = 14
3.25 + pOH = 14
pOH = 14 - 3.25
pOH = 10.75
<span>Concentration of [OH]</span>⁻<span> in solution:
</span>
[ OH⁻ ] =

[ OH⁻ ] = 10^ - 10.75
[OH⁻] = 1.778 x 10⁻¹¹ Mhope this helps !
Answer:
23.8 L
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the volume in liters of a 0.0380M potassium iodide solution that contains 150 g of potassium iodide. Be sure your answer has the correct number of significant digits.</em>
<em />
The molar mass of potassium iodide is 166.00 g/mol. The moles corresponding to 150 grams are:
150 g × (1 mol/166.00 g) = 0.904 mol
0.904 moles of potassium iodide are contained in an unknown volume of a 0.0380 mol/L potassium iodide solution. The volume is:
0.904 mol × (1 L/0.0380 mol) = 23.8 L