Answer:
the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene
Explanation:
The λmax is the wavelength of maximum absorption. We could use it to calculate the HOMO-LUMO energy difference as follows:
For ethylene
E= hc/λ= 6.63×10^-34×3×10^8/170×10^-9= 1.17×10^-18J
For cis,trans−1,3−cyclooctadiene
E= hc/λ=6.63×10^-34×3×10^8/230×10^-9=8.6×10^-19J
Therefore, the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene
1) The forward reaction is N2 (g) + O2 (g) → 2NO
(that reaction requires special contitions because at normal pressures and temperatures N2 and O2 do not react to form another compound.
2) The equiblibrium equation is
N2 (g) + O2 (g) ⇄ 2NO
3) Then, the reverse reaction is
2NO → N2(g) + O2(g)
Answer: 2NO → N2(g) + O2(g)
Answer:
0.88 g
Explanation:
Using ideal gas equation to calculate the moles of chlorine gas produced as:-

where,
P = pressure of the gas = 805 Torr
V = Volume of the gas = 235 mL = 0.235 L
T = Temperature of the gas = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
R = Gas constant = 
n = number of moles of chlorine gas = ?
Putting values in above equation, we get:

According to the reaction:-

1 mole of chlorine gas is produced when 1 mole of manganese dioxide undergoes reaction.
So,
0.01017 mole of chlorine gas is produced when 0.01017 mole of manganese dioxide undergoes reaction.
Moles of
= 0.01017 moles
Molar mass of
= 86.93685 g/mol
So,

Applying values, we get that:-

<u>0.88 g of
should be added to excess HCl (aq) to obtain 235 mL of
at 25 degrees C and 805 Torr.</u>
Answer:
See explanation and image attached
Explanation:
Aromatic compounds undergo electrophilic aromatic substitution reactions in which the aromatic ring is maintained.
Substituted benzenes may be more or less reactive towards electrophilic aromatic substitution than benzene depending on the nature of the substituent present in the ring.
Substituents that activate the ring towards electrophilic substitution such as -OCH3 are ortho-para directing.
The major products of the bromination of anisole are p-bromoanisole and o-bromoanisole. The resonance structures leading to these products are shown in the image attached.