Answer : 1.12 grams
Yo find the mass of the sample, you take the increased mass and subtract the original mass.
6.130 - 5.010 = 1.12
Answer:
C = 0.2349 J/ (g °C)
Explanation:
Mass, m = 894.0g
Initial Temperature = −5.8°C
Final Temperature = 17.5°C
Temperature change = 17.5°C - (−5.8°C) = 23.3
Heat, H = 4.90kJ = 4900 J
Specific heat capacit, C = ?
The relationship between these quantities is given by the equation;
H = mCΔT
C = H / mΔT
C = 4900 / (894)(23.3)
C = 0.2349 J/ (g °C)
Answer:
The concentration of this solution in units of pounds per gallon is ![2.776*10^{-5} \frac{lb}{gal}](https://tex.z-dn.net/?f=2.776%2A10%5E%7B-5%7D%20%5Cfrac%7Blb%7D%7Bgal%7D)
Explanation:
Units of measurement are established models for measuring different quantities. The conversion of units is the transformation of a quantity, expressed in a certain unit of measure, into an equivalent one, which may or may not be of the same system of units.
In this case, the conversion of units is carried out knowing that 1 μg are equal to 2.205*10⁻⁹ Lb and 1 mL equals 0.00022 Gallons. So
![2.77 \frac{ug}{mL} = \frac{2.77 ug}{mL}](https://tex.z-dn.net/?f=2.77%20%5Cfrac%7Bug%7D%7BmL%7D%20%3D%20%5Cfrac%7B2.77%20ug%7D%7BmL%7D)
If 1 μg equals 2.205*10⁻⁹ lb, 2.77 μg how many lb equals?
![lb=\frac{2.77ug*2.205*10^{-9}lb }{1ug}](https://tex.z-dn.net/?f=lb%3D%5Cfrac%7B2.77ug%2A2.205%2A10%5E%7B-9%7Dlb%20%7D%7B1ug%7D)
lb=6.10785*10⁻⁹
So, 2.77 μg= 6.10785*10⁻⁹ lb
Then:
![2.77 \frac{ug}{mL} = \frac{2.77 ug}{mL}=\frac{6.10785*10^{-9}lb }{mL} =\frac{6.10785*10^{-9}lb }{0.00022 gal} =\frac{6.10785*10^{-9}lb }{0.00022 gal}](https://tex.z-dn.net/?f=2.77%20%5Cfrac%7Bug%7D%7BmL%7D%20%3D%20%5Cfrac%7B2.77%20ug%7D%7BmL%7D%3D%5Cfrac%7B6.10785%2A10%5E%7B-9%7Dlb%20%7D%7BmL%7D%20%3D%5Cfrac%7B6.10785%2A10%5E%7B-9%7Dlb%20%7D%7B0.00022%20gal%7D%20%3D%5Cfrac%7B6.10785%2A10%5E%7B-9%7Dlb%20%7D%7B0.00022%20gal%7D)
You get:
![2.77 \frac{ug}{mL} = 2.776*10^{-5} \frac{lb}{gal}](https://tex.z-dn.net/?f=2.77%20%5Cfrac%7Bug%7D%7BmL%7D%20%3D%202.776%2A10%5E%7B-5%7D%20%5Cfrac%7Blb%7D%7Bgal%7D)
<u><em>The concentration of this solution in units of pounds per gallon is </em></u>
<u><em></em></u>
Moves from the atmosphere to the oceans