Answer:
The manufacturing processes for liquefied petroleum gas are designed so that the majority, if not all, of the sulfur compounds are removed. The total sulfur level is therefore considerably lower than for other crude oil-based fuels and a maximum limit for sulfur content helps to define the product more completely. The sulfur compounds that are mainly responsible for corrosion are hydrogen sulfide, carbonyl sulfide and, sometimes, elemental sulfur. Hydrogen sulfide and mercaptans have distinctive unpleasant odors. A control of the total sulfur content, hydrogen sulfide and mercaptans ensures that the product is not corrosive or nauseating. Stipulating a satisfactory copper strip test further ensures the control of the corrosion.
Answer:
I believe the answer is a
Explanation:
Painting does not save the chemical structure for preserving metals.
If this helped can i please have brainliest?
Answer:
A crystalline solid
Explanation:
Most solids form with a regular arrangement of their particles because the overall attractive interactions between particles are maximized, and the total intermolecular energy is minimized, when the particles pack in the most efficient manner. The regular arrangement at an atomic level is often reflected at a macroscopic level. Liquids dont use to have this kind of arrangements or shapes.
Answer:
455.4 g
Explanation:
Data given:
no. of moles of (NH₄)₂SO₄= 3.45 mol
mass of (NH₄)₂SO₄ = ?
Solution
Formula will be used
no.of moles = mass in grams / molar mass
Rearrange the above equation for mass
mass in grams = no. of moles x molar mass . . . . . . . . (1)
molar mass of (NH₄)₂SO₄
molar mass of (NH₄)₂SO₄ = 2(14 + 4(1)) + 32 + 4(16)
molar mass of (NH₄)₂SO₄ = 2 (14 +4) + 32 + 64
molar mass of (NH₄)₂SO₄ = 2 (18) + 32 + 64
molar mass of (NH₄)₂SO₄ = 36 + 32 + 64 = 132 g/mol
Put values in equation 1
mass in grams = 3.45 mole x 132 g/mol
mass in grams = 455.4 g
So,
mass of (NH₄)₂SO₄ = 455.4 g
It has 4 pcs of Carbon (C) and 8 pcs of Hydrogen (H) so the formula is C4H8 - calls Butene.
Hope it helps!
#MissionExam001