Answer:
Newtons first law states that:
<em>If</em><em> </em><em>a</em><em> </em><em>body</em><em> </em><em>i</em><em>s</em><em> </em><em>in</em><em> </em><em>rest</em><em> </em><em>or</em><em> </em><em>motion</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>straight</em><em> </em><em>line</em><em>,</em><em> </em><em>it</em><em> </em><em>remains</em><em> </em><em>at</em><em> </em><em>rest</em><em> </em><em>or</em><em> </em><em>at</em><em> </em><em>motion</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>straight</em><em> </em><em>line</em><em> </em><em>with</em><em> </em><em>constant</em><em> </em><em>speed</em><em> </em><em>until</em><em> </em><em>and</em><em> </em><em>unless</em><em> </em><em>and</em><em> </em><em>external</em><em> </em><em>unbalanced</em><em> </em><em>force</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>it</em><em>.</em>
<em>'</em><em>This</em><em> </em><em>law</em><em> </em><em>i</em><em>s</em><em> </em><em>also</em><em> </em><em>known</em><em> </em><em>as</em><em> </em><em>the</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>Inertia</em><em>.</em><em>'</em>
Answer:
![t_1 = \frac{v_i}{a_i}](https://tex.z-dn.net/?f=%20t_1%20%3D%20%5Cfrac%7Bv_i%7D%7Ba_i%7D)
![t_2 = \frac{v_i}{a_i}](https://tex.z-dn.net/?f=%20t_2%20%3D%20%5Cfrac%7Bv_i%7D%7Ba_i%7D)
Δd = ![v_it_1 = v_i^2/a_i](https://tex.z-dn.net/?f=%20v_it_1%20%3D%20v_i%5E2%2Fa_i)
Explanation:
As
, when the car is making full stop,
.
. Therefore,
![0 = v_i - a_it_1\\v_i = a_it_1\\t_1 = \frac{v_i}{a_i}](https://tex.z-dn.net/?f=0%20%3D%20v_i%20-%20a_it_1%5C%5Cv_i%20%3D%20a_it_1%5C%5Ct_1%20%3D%20%5Cfrac%7Bv_i%7D%7Ba_i%7D)
Apply the same formula above, with
and
, and the car is starting from 0 speed, we have
![v_i = 0 + a_it_2\\t_2 = \frac{v_i}{a_i}](https://tex.z-dn.net/?f=%20v_i%20%3D%200%20%2B%20a_it_2%5C%5Ct_2%20%3D%20%5Cfrac%7Bv_i%7D%7Ba_i%7D)
As
. After
, the car would have traveled a distance of
![s(t) = s(t_1) + s(t_2)\\s(t_1) = (v_it_1 - \frac{a_it_1^2}{2})\\ s(t_2) = \frac{a_it_2^2}{2}](https://tex.z-dn.net/?f=s%28t%29%20%3D%20s%28t_1%29%20%2B%20s%28t_2%29%5C%5Cs%28t_1%29%20%3D%20%28v_it_1%20-%20%5Cfrac%7Ba_it_1%5E2%7D%7B2%7D%29%5C%5C%20s%28t_2%29%20%3D%20%5Cfrac%7Ba_it_2%5E2%7D%7B2%7D)
Hence ![s(t) = (v_it_1 - \frac{a_it_1^2}{2}) + \frac{a_it_2^2}{2}](https://tex.z-dn.net/?f=%20s%28t%29%20%3D%20%28v_it_1%20-%20%5Cfrac%7Ba_it_1%5E2%7D%7B2%7D%29%20%2B%20%5Cfrac%7Ba_it_2%5E2%7D%7B2%7D%20)
As
we can simplify ![s(t) = v_it_1](https://tex.z-dn.net/?f=s%28t%29%20%3D%20v_it_1)
After t time, the train would have traveled a distance of ![s(t) = v_i(t_1 + t_2) = 2v_it_1](https://tex.z-dn.net/?f=%20s%28t%29%20%3D%20v_i%28t_1%20%2B%20t_2%29%20%3D%202v_it_1)
Therefore, Δd would be ![2v_it_1 - v_it_1 = v_it_1 = v_i^2/a_i](https://tex.z-dn.net/?f=%202v_it_1%20-%20v_it_1%20%3D%20v_it_1%20%3D%20v_i%5E2%2Fa_i)
Answer:
False
Explanation:
False, as a magnetic field is generated whenever current travels through a conductor.
An electromagnet consists of a coil of wire wrapped around a bar of iron. The coil and iron bar get magnetized when electric current flows through the wire. An electromagnet also has north and south magnetic poles. The magnetic field is strongest at either pole of the magnet.
Answer:
- <u>The energy change would be 46kJ</u>
- <u>The energy would be absorbed</u>
Explanation:
The <em>energy change </em>during a chemical reation, i.e. the reaction energy, is equal to the chemical energy stored in the<em> bonds of the products </em>less the chemical energy stored in the <em>bonds of the reactants</em>.
Hence:
- <em>Energy change</em> = 478 kJ - 432kJ = 46kJ
The change is positive, this is, the chemical energy of the products is greater than the chemical energy of the reactants.
That corresponds to the second graph, where the level of the energy of the products in the graph is higher than the level of the energy of the reactants. Therefore, the conclusion is that the reaction <em>absorbed energy</em> and it is endothermic.
The force of the racket affects the ball's motion because it changes the momentum of the ball.
<h3>Impulse received by the ball</h3>
The impulse received by the ball through the racket affects the motion because it changes the momentum of the ball.
The ball which is initially at rest, will gain momentum after been hit with the racket.
J = ΔP = Ft
where;
- J is the impulse received by the ball
- ΔP is change in momentum of the ball
- F is the applied force
- t is the time of action
Thus, the force of the racket affects the ball's motion because it changes the momentum of the ball.
Learn more about impulse here: brainly.com/question/25700778