Answer:
Magnitude of the net force acting on the kayak = 39.61 N
Explanation:
Considering motion of kayak:-
Initial velocity, u = 0 m/s
Distance , s = 0.40 m
Final velocity, v = 0.65 m/s
We have equation of motion v² = u² + 2as
Substituting
v² = u² + 2as
0.65² = 0² + 2 x a x 0.4
a = 0.53 m/s²
We have force, F = ma
Mass, m = 75 kg
F = ma = 75 x 0.53 = 39.61 N
Magnitude of the net force acting on the kayak = 39.61 N
Insulators- fur, plastic, lots of non metals
Conductors- metals, wire, most metals
:)
V=r/t
Speed equals displacement over the time
V=100/9.92=10.08ms^-1
Answer:
271.862 N/m
Explanation:
From Hook's Law,
mgh = 1/2ke²............... Equation 1
Where
m = mass of the ball, g = acceleration due to gravity, k = spring constant, e = extension, h = height fro which the ball was dropped.
Making k the subject of the equation,
k =2mgh/k²....................... Equation 2
Note: The potential energy of the ball is equal to the elastic potential energy of the spring.
Given: m = 60.3 g = 0.0603 kg, g = 9.8 m/s², e = 4.68317 cm = 0.0468317 m, h = 53.7 cm = 0.537 m
Substitute into equation 2
k = 2(0.0603)(9.8)(0.537)/0.048317²
k = 0.6346696/0.0023345
k = 271.862 N/m
Answer:
The law of inertia
Explanation:
A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force