Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s
Galileo Galilei is one of the key figures in the history of Science, being the first to apply the experimental-mathematical scientific method. He carried out experiments and careful observations in kinematics (his studies on the trajectory of projectiles are famous) and dynamics (it should be noted his careful experiments with inclined planes), establishing the first law of Dynamics (which Newton will later collect and refine in his Principles); and in Astronomy, with which he could unequivocally support the heliocentric theory.
His experiments were addressed by methodologies that allowed him to precisely find his mathematical calculations and to verify theories he was developing over time. His manuscripts were key to disseminate the applied method and extrapolate them to other scientific areas.
Therefore the correct answer is C.
Answer:
A. 2.2*10^-2m
Explanation:
Using
Area = length x L/ uo xN²
So A = 0.7m * 25 x 10^-3H /( 4π x10^-7*
3000²)
A = 17.5*10^-3/ 1.13*10^-5
= 15.5*10^-2m²
Area= π r ²
15.5E-2/3.142 = r²
2.2*10^2m
Explanation:
Answer: 170.67 N
Explanation:
Given
Mass of skier is 
Height of the inclination is 
Here, the potential energy of the skier is converted into kinetic energy which is consumed by the friction force by applying a constant force that does work to stop the skier.
![\Rightarrow mgh=F\cdot x\quad \quad [\text{F=constant friction force}]\\\\\Rightarrow 82.9\times 9.8\times 20=F\cdot 95.2\\\\\Rightarrow F=\dfrac{16,248.4}{95.2}\\\\\Rightarrow F=170.67\ N](https://tex.z-dn.net/?f=%5CRightarrow%20mgh%3DF%5Ccdot%20x%5Cquad%20%5Cquad%20%5B%5Ctext%7BF%3Dconstant%20friction%20force%7D%5D%5C%5C%5C%5C%5CRightarrow%2082.9%5Ctimes%209.8%5Ctimes%2020%3DF%5Ccdot%2095.2%5C%5C%5C%5C%5CRightarrow%20F%3D%5Cdfrac%7B16%2C248.4%7D%7B95.2%7D%5C%5C%5C%5C%5CRightarrow%20F%3D170.67%5C%20N)
Thus, the horizontal friction force is 170.67 N.
Answer:
72km/hr
Explanation:
Speed in Km is usually represented in hours. so if the car is in constant velocity, and if the car travels 36km in 30 min then it travels 72km in 1 hour.
so the speed of the car is 72km/hr