This can be answered using the beat frequency formula, which is simply the difference between 2 frequencies.
Let: <span>fᵇ = beat frequency
</span>f₁ = first frequency
f₂ = second frequency
fᵇ = |f₁ - f₂|
substituting the values:
fᵇ = |24Hz - 20Hz|
fᵇ = 4Hz
The unit Hz also means beats per second, therefore:
<span>fᵇ = 4 beats per second
</span>
Therefore, the answer is C. 4
        
                    
             
        
        
        
Answer:
a. 7.046 Nm²/C
b. 2.348 Nm²/C
Explanation:
Data given:
Base of equilateral triangle = 25.0 cm = 0.25 m
Strength of electric field = 260 N/C
In order to find the electric flux we first have to find out the area of triangle.
Area of triangle = 
                          = 
                          = 0.0271 m³
Lets find electric flux,
       Electric Flux = E. A
                           = 260×0.0271
                           = 7.046 Nm²/C
Now we can find the electric flux through each of the three sides.
Electric flux through three sides = 
                                                  = 2.348 N m²/C
        
 
        
             
        
        
        
Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
 
        
             
        
        
        
Answer:
Distance: 75 km
Displacement: 45 km
Explanation:
- Distance is a scalar quantity that refers to the total space covered by an object. It is calculated as the sum of the distances covered in each motion, regardless of their direction. therefore in this case:
distance = 60 km + 15 km = 75 km
- Displacement is a vector quantity whose magnitude is equal to the difference between the final point and the starting point of the motion, so it also takes into account the direction of each motion. In this case, the truck moves 60 km east, and then 15 km west: if we call '0' the starting point, the final point will be then

And so the displacement is
