Answer:
gggggggggggggggggggggggggggggggggg
Explanation:
Answer:
7.6 g
Explanation:
"Well lagged" means insulated, so there's no heat transfer between the calorimeter and the surroundings.
The heat gained by the copper, water, and ice = the heat lost by the steam
Heat gained by the copper:
q = mCΔT
q = (120 g) (0.40 J/g/K) (40°C − 0°C)
q = 1920 J
Heat gained by the water:
q = mCΔT
q = (70 g) (4.2 J/g/K) (40°C − 0°C)
q = 11760 J
Heat gained by the ice:
q = mL + mCΔT
q = (10 g) (320 J/g) + (10 g) (4.2 J/g/K) (40°C − 0°C)
q = 4880 J
Heat lost by the steam:
q = mL + mCΔT
q = m (2200 J/g) + m (4.2 J/g/K) (100°C − 40°C)
q = 2452 J/g m
Plugging the values into the equation:
1920 J + 11760 J + 4880 J = 2452 J/g m
18560 J = 2452 J/g m
m = 7.6 g
Answer:
μ =tanθ
Explanation:=
The ratio of the force of static friction and the normal reaction is equal to tanθ. F=mgsinθ. R = mgcosθ.
μ=tanθ
Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem.
The attached file has a detailed solution of the given problem.