Answer:
I think it's B, not quite sure tho.
Answer:
Energy implies as the object’s capability to perform work. It is something that cannot be created or destroyed but can only be transformed. An object loses its energy, when it performs work, whereas it gains energy when the work is performed on it. Energy is broadly classified as kinetic energy and potential energy. While kinetic energy is the energy which an object contains because of a particular motion.
On the other hand, potential energy is the stored energy, because of its state of rest. As both the two forms of energy are measured in joules, people get easily confused between these two. So, take a read of the article which will help you to understand the differences between kinetic and potential energy.
Explanation:
Hope this helps - Good luck ^w
Answer:125N
Explanation:
Mass =25kg
Acceleration =5m/s/s
Force=mass x acceleration
Force=25 x 5
Force=125N
The atmospheric P is greater than the P in the flask, since
the Hg level is lacking down lower on the side open to the atmosphere.
43.4 cm x (10 mm / 1 cm) = 435 mm
the density of Hg is 13.6 / 0.791 = 17.2 times better than the liquid in the
manometer. This means that 1 mmHg = 17.2 mm of manometer liquid.
435 mm manometer liquid x (1 mm Hg / 17.2 mm manometer liquid) = 25.3 mm
Hg
The pressure in the flask is 755 - 25.3 = 729.7 mmHg.
729.7 mmHg x (1 atm / 760 mmHg ) = 0.960 atm.
Answer:
(a) the particle position = 135 m
(b) the velocity of the particle = 44 m/s
(c) the acceleration of the particle = 50 m/s²
Explanation:
Solution to Question 2.
Given;
velocity of a particle, v = 2 - 4t + 2t³
initial position at t = 0, s₀ = 3 m
(a) the particle position at t = 3 s
s = vt
s = (2 - 4t + 2t³)t
s = 2t - 4t² + 2t⁴
s = s₀ + s₃
s = s₀ + 2(3) - 4(3²) + 2(3⁴)
s = s₀ + 6 - 36 + 162
s = s₀ + 132 m
s = 3m + 132 m
s = 135 m
(b) the velocity of the particle at t = 3 s
v = 2 - 4t + 2t³ = 2 - 4(3) + 2(3)³
v = 44 m/s
(c) the acceleration of the particle at t = 3s
v = 2 - 4t + 2t³

a = -4 + 6(3)²
a = 50 m/s²