Answer:
The light emitted by a light bulb is a form of radiation that occurs when the filament heats up and its thermal emission gains enough energy to move into the visible spectrum.
Explanation:
Light bulbs contain a filament which is heated up electrically. When this filament is heated up,energy in the form of heat is imparted to the electrons in the filament.
This thermal excitation of electrons ultimately leads to emission of light in the viable spectrum. This light is now radiated through a light bulb.
Answer:
is there choices you have to pick from
Explanation:
or do you have to describe a covalent bond ?
Answer: It turns blue litmus red
Explanation:
I just got it right on edge
Answer:
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Explanation:
The pH of a buffer solution is calculated using following relation

Thus the pH of buffer solution will be near to the pKa of the acid used in making the buffer solution.
The pKa value of HC₃H₅O₃ acid is more closer to required pH = 4 than CH₃NH₃⁺ acid.
pKa = -log [Ka]
For HC₃H₅O₃
pKa = 3.1
For CH₃NH₃⁺
pKa = 10.64
pKb = 14-10.64 = 3.36 [Thus the pKb of this acid is also near to required pH value)
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Half of the acid will get neutralized by the given base and thus will result in equal concentration of both the weak acid and the salt making the pH just equal to the pKa value.
Answer: 0.00867 moldm-3
Explanation:
Since the reaction is 1st order,
Rate of reaction=∆[A]÷t
0.646-0.0146/72.8= 0.00867
Remember that in a first order reaction, the rate of reaction depends on change in the concentration of only one of the reaction species, A in the problem above.