I am pretty sure about these answers.Thermal goes in the 4th blank.
Mechanical goes in the 2nd blank.
Electrical goes in the 3rd blank.
I think chemical goes in the 1st blank and light goes in the 5th blank
Hope this helps
Answer:
a)η = 69.18 %
b)W= 1210 J
c)P=3967.21 W
Explanation:
Given that
Q₁ = 1749 J
Q₂ = 539 J
From first law of thermodynamics
Q₁ = Q₂ +W
W=Work out put
Q₂=Heat rejected to the cold reservoir
Q₁ =heat absorb by hot reservoir
W= Q₁- Q₂
W= 1210 J
The efficiency given as



η = 69.18 %
We know that rate of work done is known as power


P=3967.21 W
Answer:
If a crest formed by one wave interferes with a trough formed by the other wave then the rope will not move at all.
Explanation:
Assume a straight rope tied to both ends is at rest. When a wave is created at one end of the rope, it travels to the other end of the rope through formation of alternative crest and trough. Due to these crest and trough the rope shifts up and down.
But when there are two waves travelling through the rope and both have opposite direction (directed towards one another) in such a way that crest formed by one wave is interfering with the trough formed by the other wave then due to this interference the waves will cancel the effects of each other on the rope and rope will be stable.
The period of the pendulum is given by the following equation
T = 2π * sqrt (L/g)
Where g is the gravity (free fall acceleration)
L is the longitude of the pendulum
T is the period.
We find g.............> (T /2π)^2 = L/g
g = L/(T /2π)^2...........> g = 22.657 m/s^2
Explanation:
Let yellow ball be m1 = 0.5kg with u1 = 8 m/s and blue ball be m2 = 0.25 kg with u2 = - 4 m /s respectively.
After collision, blue ball travels 12 m/s.
<u>Using conservation of Linear Momentum</u> :
m1u1 + m2u2 = m1v1 + m2v2
0.5* 8 + 0.25 * - 4 = 0.5 * v1 + 0.25 * 12
v1 = 0 m/sec i.e. <u>Yellow ball comes to rest</u>.