1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nexus9112 [7]
3 years ago
10

The diagram shows light passing through and opening and forming bonds. Which two order bands are the dimmest?

Physics
2 answers:
myrzilka [38]3 years ago
8 0

The correct answer is (D) because I said it is lol, but fr i'm right!

Oxana [17]3 years ago
7 0
I think its option d
n=2 n=3
You might be interested in
figure 2 shows a charged ball of mass m = 1.0 g and charage q = -24*10^-8 c suspended by massless string in the presence of a un
Vlad [161]

Answer:

E = 307667  N/C

Explanation:

Since the object's mass is 1 g, then its weight in newtons is 0.001 * 9.8 = 0.0098 N.

This weight should have the same magnitude of the vertical component of the tension T of the string (T * cos(37)) so we can find the magnitude of the tension T via:

0.0098 N = T * cos(37)

then T = 0.0098/cos(37) N = 0.01227 N

Knowing the tension's magnitude, we can find its horizontal component:

T * sin(37) = 0.007384 N

and now we can obtain the value of the electric field since we know the charge of the ball to be: -2.4 * 10^(-8) C:

0.007384 N = E * 2.4 * 10^(-8) C

Then  E = 0.007384/2.4 * 10^(-8)  N/C

E = 307667  N/C

8 0
3 years ago
A projectile is launched at an angle of 30 and lands 20 s later at the same height as it was launched. (a) What is the initial s
Pavlova-9 [17]

Answer:

(a) 196 m/s

(b) 490 m

(c) 3394.82 m

(d) 2572.5 m

Explanation:

First of all, let us know one thing. When an object is thrown in the air, it experiences two forces acting in two different directions, one in the horizontal direction called air resistance and the second in the vertically downward direction due to its weight. In most of the cases, while solving numerical problems, air resistance is neglected unless stated in the numerical problem. This means we can assume zero acceleration along the horizontal direction.

Now, while solving our numerical problem, we will discuss motion along two axes according to our convenience in the course of solving this problem.

<u>Given:</u>

  • Time of flight = t = 20 s
  • Angle of the initial velocity of projectile with the horizontal = \theta = 30^\circ

<u>Assume:</u>

  • Initial velocity of the projectile = u
  • R = Range of the projectile during the time of flight
  • H = maximum height of the projectile
  • D = displacement of the projectile from the initial position at t = 15 s

Let us assume that the position from where the projectile was projected lies at origin.

  • Initial horizontal velocity of the projectile = u\cos \theta
  • Initial horizontal velocity of the projectile = u\sin \theta

Part (a):

During the time of flight the displacement of the projectile along the vertical is zero as it comes to the same vertical height from where it was projected.

\therefore u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow u\sin \theta t=\dfrac{1}{2}(g)t^2\\\Rightarrow u=\dfrac{gt^2}{2\sin \theta t}\\\Rightarrow u=\dfrac{9.8\times 20^2}{2\sin 30^\circ \times 20}\\\Rightarrow u=196\ m/s

Hence, the initial speed  of the projectile is 196 m/s.

Part (b):

For a projectile, the time take by it to reach its maximum height is equal to return from the maximum height to its initial height is the same.

So, time taken to reach its maximum height will be equal to 10 s.

And during the upward motion of this time interval, the distance travel along the vertical will give us maximum height.

\therefore H = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow H = 196\times \sin 30^\circ \times 10 + \dfrac{1}{2}\times(-9.8)\times 10^2\\ \Rightarrow H =490\ m

Hence, the maximum altitude is 490 m.

Part (c):

Range is the horizontal displacement of the projectile from the initial position. As acceleration is zero along the horizontal, the projectile is in uniform motion along the horizontal direction.

So, the range is given by:

R = u\cos \theta t\\\Rightarrow R = 196\times \cos 30^\circ \times 20\\\Rightarrow R =3394.82\ m

Hence, the range of the projectile is 3394.82 m.

Part (d):

In order to calculate the displacement of the projectile from its initial position, we first will have to find out the height of the projectile and its range during 15 s.

\therefore h = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow h = 196\times \sin 30^\circ \times 15 + \dfrac{1}{2}\times(-9.8)\times 15^2\\ \Rightarrow h =367.5\ m\\r = u\cos \theta t\\\Rightarrow r = 196\times \cos 30^\circ \times 15\\\Rightarrow r =2546.11\ m\\\therefore D = \sqrt{r^2+h^2}\\\Rightarrow D = \sqrt{2546.11^2+367.5^2}\\\Rightarrow D =2572.5\ m

Hence, the displacement from the point of launch to the position on its trajectory at 15 s is 2572.5 m.

6 0
2 years ago
All atoms of an element have the same number of__But within the same element there may exist atoms that have__numbers of__.Atoms
Elza [17]

Answer:

isotopes

Explanation:

3 0
3 years ago
Green plants convert light energy from the sun into ______. * a. gravitational potential energy b. chemical potential energy c.
katrin [286]

Answer:

chemical potiential energy

6 0
3 years ago
Help!!!, combination circuits, Physics
Kaylis [27]

Current and voltage on each resistor:

I_1 = 3.98 A, V_1 = 3.98 V

I_2=0.015 A, V_2 = 0.075 V

I_3 = 0.4 A, V_3 = 0.4 V

I_4 = 0.385 A, V_4 = 0.77 V

I_5 = 0.585 A, V_5 = 1.17 V

I_6 = 3.01 A, V_6 = 6.02 V

I_7 = 0.97 A, V_7 = 4.85 V

Explanation:

In order to solve the circuit, we first have to find the equivalent resistance of the whole circuit, then the total current, and then we can proceed finding the current and the voltage for each resistor.

We start by calculating the equivalent resistance of resistors 2 and 3, which are in parallel:

R_{23}=\frac{R_2R_3}{R_2+R_3}=\frac{(5)(1)}{5+1}=0.833\Omega

This resistor is in series with resistor 4, so:

R_{234}=R_{23}+R_4=0.833+2.0=2.833\Omega

This resistor is in parallel with resistor 5, therefore:

R_{2345}=\frac{R_{234}R_5}{R_{234}+R_5}=\frac{(2.833)(2.0)}{2.833+2.0}=1.172\Omega

This resistor is in series with resistor 7, so:

R_{23457}=R_{2345}+R_7=1.172+5.0=6.172\Omega

This resistor is in parallel with resistor 6, so:

R_{234567}=\frac{R_{23457}R_6}{R_{23457}+R_6}=\frac{(6.172)(2.0)}{6.172+2.0}=1.510\Omega

Finally, this combination is in series with resistor 1:

R_{eq}=R_1+R_{234567}=1.0+1.510=2.510\Omega

We finally found the equivalent resistance of the circuit. Now we can find the total current in the circuit, which is also the current flowing through resistor 1:

I_1=\frac{V}{R_{eq}}=\frac{10}{2.510}=3.98 A

And we can also find the potential difference across resistor 1:

V_1=I_1 R_1=(3.98)(1.0)=3.98 V

This means that the voltage across resistor 6 is

V_6=V-V_1=10-3.98=6.02 V

And so, the current on resistor 6 is

I_6=\frac{V_6}{R_6}=\frac{6.02}{2.0}=3.01 A

The current flowing in the whole part of the circuit containing resistors 2,3,4,5,7, and therefore through resistor 7, is

I_7=I-I_6=3.98-3.01=0.97 A

And so the voltage across resistor 7 is

V_7=I_7 R_7=(0.97)(5.0)=4.85 V

The voltage across resistor 5 is

V_5 = V_6 - V_7 = 6.02 - 4.85 =1.17 V

And so the current is

I_5 = \frac{V_5}{R_5}=\frac{1.17}{2.0}=0.585 A

The current through resistor 4 is

I_4 = I_7 - I_5 = 0.97-0.585 = 0.385 A

And therefore its voltage is

V_4=I_4 R_4 = (0.385)(2.0)=0.77 V

So, the voltage through resistor 3 is

V_3=V_5-V_4=1.17-0.77=0.4 V

And the current is

I_3=\frac{V_3}{R_3}=\frac{0.4}{1.0}=0.4 A

Finally, the current through resistor 2 is

I_2=I_4-I_3=0.5-0.385=0.015 A

And so its voltage is

V_2=I_2R_2=(0.015)(5.0)=0.075 V

Learn more about current and voltage:

brainly.com/question/4438943

brainly.com/question/10597501

brainly.com/question/12246020

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • A string is wrapped around a uniform cylinder of mass M and radius R. The cylinder is released from rest with the string vertica
    5·1 answer
  • Does mass affect the final velocity of an object if the object begins with a high initial velocity? Why or why not?
    9·1 answer
  • Human reaction times are worsened by alcohol. How much further (in feet) would a drunk driver's car travel before he hits the br
    12·1 answer
  • What will most likely happen if a sound wave moves from the air through a solid
    8·1 answer
  • A 50.0 ohm and a 30.0 ohm resistor are connected in parallel. What is their equivalent resistance? Unit=Ohms
    15·1 answer
  • Which of the following technologies would produce the least energy in light
    9·1 answer
  • 5<br> b. What is the molecular shape of the molecule? (3 points)
    7·2 answers
  • Join not for bâd purpose​
    8·2 answers
  • Assuming the radius of diatomic molecules is approximately 2.3 ×10-10 m for what pressure in Pa will the mean free path in room-
    5·1 answer
  • A mercury thermometer reads 10oC when dipped into melting ice and 90oC
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!