The drag force acting on the rocket is 80N.
<h3>Give an explanation of drag force?</h3>
The divergence in velocity between the fluid and the item, also known as drag, exerts a force on it. Between the liquid and the solid object, there should be motion. Drag is absent in the absence of motion.
The air molecules are more compressed (pushed together) on the surfaces that are facing the front while being more dispersed (spread out) on the surfaces facing the back. Turbulent flow, which occurs when air layers split from the surface and start to swirl, is what causes this.
The drag force acting on the rocket F = ma
Given,
m = 4kg, a = 20ftm/s²
Substituting m and a values in the above formula,
The drag force acting on the rocket F = 4×20
The drag force acting on the rocket F = 80N.
To know more about drag force visit:
brainly.com/question/15144984
#SPJ4
I believe the answer is "radioactive decay".
Answer:
im not 100% sure i should be doing this but i found a website that will help a ton.
https://geo.libretexts.org/Courses/Gettysburg_College/Book%3A_An_Introduction_to_Geology_(Johnson_Affolter_Inkenbrandt_and_Mosher)/02%3A_Plate_Tectonics/2.01%3A_Alfred_Wegener%E2%80%99s_Continental_Drift_Hypothesis
Answer:
Change in velocity: 88 m/s
Average velocity: 50 m/s
initial velocity: 5.9 m/s
Final velocity: 94 m/s
Initial momentum: 3.6 kg m/s
Final momentum: 58 kg m/s
Explanation:
Acceleration = change in velocity / time
9.8 m/s² = Δv / 9.0 s
Δv = 88 m/s
Work = change in energy
Fd = ΔE
(6.0 N) d = 2700 J
d = 450 m
Average velocity = distance / time
v_avg = 450 m / 9.0 s
v_avg = 50 m/s
v − v₀ = 88 m/s
½ (v + v₀) = 50 m/s
Solving the system of equations:
v + v₀ = 100 m/s
2v = 188 m/s
v = 94 m/s
v₀ = 5.9 m/s
Use Newton's second law to find the mass:
F = ma
6.0 N = m (9.8 m/s²)
m = 0.61 kg
Find the momentums:
p₀ = (0.61 kg) (5.9 m/s) = 3.6 kg m/s
p = (0.61 kg) (94 m/s) = 58 kg m/s