1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marin [14]
3 years ago
9

What is the acceleration of the the object during the first 4 seconds?

Physics
1 answer:
AVprozaik [17]3 years ago
6 0

Answer:

Velocity (m/s) over time (s) graph

Velocity (m/s) over time (s) graph

We could write out our average acceleration as:

a = Δv/ Δta=Δv/Δta, equals, Δ, v, slash, Δ, t

a = (15 m/s - 0 m/s) / 0.2 seconds

a = 15 m/s / 0.2 seconds

a = 75 m/s / second

Explanation:

What this formula is telling us is that if we know the acceleration of an object, and the ... we can plug in our acceleration of 12.5 m/s2 for a, and 4 seconds for t.

Velocity (m/s) over time (s) graph

Velocity (m/s) over time (s) graph

We could write out our average acceleration as:

a = Δv/ Δta=Δv/Δta, equals, Δ, v, slash, Δ, t

a = (15 m/s - 0 m/s) / 0.2 seconds

a = 15 m/s / 0.2 seconds

a = 75 m/s / second

You might be interested in
Raghu studies in grade 6th. He wants a cricket bat to be made by a carpenter. He tells the
kvasek [131]

Based on the information given, it can be noted that the bat was either shorter or longer than what he expected.

From the information given, it was stated that Raghu wants a cricket bat to be made by a carpenter and he tells the carpenter that the length of the bat should be 7 hand spans.

Since he got disappointed when he collected the bat, the reason for this will be because the bat was either shorter or longer than what he requested.

Learn more about length on:

brainly.com/question/25292087

8 0
3 years ago
Ice floats on water.​
OleMash [197]

Answer:

Yeah ice floats on water.

Observation

Example in those areas were ice is found like Antarctica ice is found on top of water.

5 0
3 years ago
Learning Task 2: Prepare a basin with half-filled water and stone. Drop a stone
ELEN [110]

Answer:

1 . What happens when you drop the stone?

Depending on the weight from which the stone was dropped, the glass might well break

2 depending on the size and weight and shape on the stone the glass might well break

3 depending on the density on the stone the stone might when float on the water

Explanition :

GIVE ME BRAINLESS PLEASE !!

6 0
3 years ago
A book on a 2-meter high shelf has a mass of 0.4 kg. What is its potential energy?
pychu [463]

Answer:

how can we get the best out with a little of my life and I think the most common reason I would n I have been having this problem for years is done in my life as the other people

6 0
2 years ago
Bryce, a mouse lover, keeps his four pet mice in a roomy cage, where they spend much of their spare time (when they are not slee
user100 [1]

Answer:

I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s ,  I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s ,  I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s  and I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

Explanation:

The impulse is equal to the variation of the moment, to apply this relationship to our case, we will assume that initially the mouse was at rest

    I = Δp = m v_{f} -m v₀

    I = m (v_{f}  -v₀)

Bold indicates vector quantities, let's calculate the momentum of each mouse in for the x and y axes

We recommend bringing all units to the SI system

Mouse 1.

It has a mass of 22.3 g = 22.3 10⁻³ kg, a final velocity of (v = 0.349 i ^ - 0.301 j ^) m / s with an initial velocity of zero

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 22.3 10⁻³ (0.349 -0)

    Iₓ = 7.78 10⁻³ J s

   I_{y} = m (v_{fy}  -v_{oy} )

   I_{y} = 22.3 10⁻³ (-0.301)

   I_{y} = -6.71 10⁻³ J s

   I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s

Mouse 2

Mass 17.9 g = 17.9 10⁻³ kg

Speed ​​(-0.699 i ^ - 0.815 j ^) m / s

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 17.9 10⁻³ (-0.699 -0)

    Iₓ = -12.5 10⁻³ J s

    I_{y} = 17.9 10⁻³ (-0.815 - 0)

    I_{y} = -14.6 10⁻³ J s

   I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s

Mouse 3

Mass 19.1 g = 19.1 10⁻³ kg

Speed ​​(0.745i ^ + 0.975 j ^) m / s

    Iₓ = 19.1 10⁻³ (0.745 -0)

    Iₓ = 14.2 10⁻³ J s

    I_{y} = 19.1 10⁻³(0.975 -0)

    I_{y} = 18.6 10⁻³ J s

    I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s

Mouse 4

Mass 10.1 g = 10.1 10⁻³ kg

Speed ​​(-0.905i ^ + 0.717j ^) m / s

    Iₓ = 10.1 10⁻³ (-0.905 -0)

    Iₓ = -9.14 10⁻³ J s

    I_{y} = 10.1 10⁻³ (0.717 -0)

    I_{y} = 7.24 10⁻³ J s

   I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

8 0
3 years ago
Other questions:
  • Assuming that all of the carbon dioxide ends up in the balloon, what will be the volume of the balloon at a temperature of 27 ∘C
    12·2 answers
  • Think about the following statement Only communities located downstream in a watershed need to be concerned about how the water
    5·1 answer
  • Matt forgot to put the fabric softener in the wash. As his socks tumbled in the dryer, they became charged. If a small piece of
    10·1 answer
  • Physics. I need help​
    8·1 answer
  • List and define three types of intermolecular forces and identify which types of molecules each forces affects.
    8·1 answer
  • What force would have to win out in order for the Big Crunch to occur?
    13·1 answer
  • What direction do s waves move in
    10·1 answer
  • Pls help promise to mark as brainlist
    11·1 answer
  • Suppose two comets, comet A and comet B, were orbiting the Sun, having the same average orbital radii. If comet A had a higher e
    5·1 answer
  • Russell drags his suitcase 15.0 M from the door of his house to the car at a constant speed with a horizontal force of 95.0 N. H
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!