The red box must way more. Gravitational potential energy is the product of a an objects mass times the acceleration due to gravity (which is constant on earth) times its height. Since the objects are on the same shelf they are at the same height, and since gravitational acceleration is constant as long as we stay on planet earth, then the mass is the only possible thing that could have changed. This means that the red box must weigh more than the blue box.
Synodic month, also known as a lunar month.
The answer to this question lies in the definition of density. One material will just float over another if its density is smaller. If one material is denser than the other, it will sink.
Density can be defined as the mass per unit volume of a substance at a given pressure and temperature.
Thus, for a material to float in water, it does not depend on the weight, or rather on the mass, but on the distribution of the mass by the volume occupied, that is, of the density. The more distributed the mass, that is, the larger its volume, the less dense the object and it will float.
Object C has the lowest density<span>
65 N or 6.5 Kg ------------ 6 N or 6 Kg
This effective mass under water will be its actual mass minus the mass of the fluid displaced.
The buoyant force on a submerged object is equal to the weight of the fluid displaced.
Weight of object - buoyant force on object (the mass of the fluid displaced)
6Kg - 6.5Kg= - 0.5Kg
</span>Answer: C. object C
Newton's second law is stated as:
F=ma,
a = (7-4)/1.5 = 2 m/s^2 (it is a deceleration due to impact with floor. And thus the ball exerts force on the floor).
Therefore,
F= 0.3*2 = 0.6 N