Answer:
No.
Explanation:
The scale actually measures the force that the object does against it, and that force is called the weight.
Such that if we have an object with mass M and we are on Earth, where the gravitational acceleration is g, the weight is:
W = M*g
Now, there is a unit called "kilogram-force"
Such that on Earth, an object that has a mass of 10 kilograms, weighs 10 kilograms-force.
Then from the weight measure, we can instantly know the mass of the object, but the thing that is being measured is the weight, not the mass.
Answer:
10 degree C
Explanation:
Q = 500 kcal = 500 x 1000 x 4.186 J = 2.1 x 10^6 J
V = 50 liter
m = Volume x density = 50 x 10^3 x 1000 = 50 kg
Let ΔT be the rise in temperature.
Specific heat of water = 4186 J/kg C
Q = m x c x ΔT
2.1 x 10^6 = 50 x 4186 x ΔT
ΔT = 10 degree C
Answer:
Explanation:
mass of string = .0125 / 9.8
= 1.275 x 10⁻³ kg
Length of string l = 1.5 m .
m = mass per unit length
= ( .1.275 / 1.5) x 10⁻³ kg/m
m = .85 x 10⁻³ kg/m
wave equation: y(x,t) = (8.50 mm)cos(172 rad/m x − 4830 rad/s t)
compare with equation of wave
y(x,t) = Acos(K x − ω t)
ω ( angular velocity ) = 4830 rad/s
k = 172 rad/m
Velocity = ω / k
= 4830/172 m /s
= 28.08 m /s
velocity of wave = 
28.08 = 
788.48 = W / .85 X 10⁻³
W = 670 x 10⁻³ N .
c ) wave length
wave length =2π / k
= 2 x 3.14 / 172
= .0365 m
no of wave lengths over whole length of string
= 1.5 / .0365
= 41
d )
equation for waves traveling down the string
= (8.50 mm)cos(172 rad/m x + 4830 rad/s t)
Answer:
Zero
Explanation:
Acceleration is rate of change of velocity..