Answer: 7.38 km
Explanation: The attachment shows the illustration diagram for the question.
The range of the bomb's motion as obtained from the equations of motion,
H = u(y) t + 0.5g(t^2)
U(y) = initial vertical component of velocity = 0 m/s
That means t = √(2H/g)
The horizontal distance covered, R,
R = u(x) t = u(x) √(2H/g)
Where u(x) = the initial horizontal component of the bomb's velocity = 287 m/s, H = vertical height at which the bomb was thrown = 3.24 km = 3240 m, g = acceleration due to gravity = 9.8 m/s2
R = 287 √(2×3240/9.8) = 7380 m = 7.38 km
Answer:
, level is rising.
Explanation:
Since liquid water is a incompresible fluid, density can be eliminated of the equation of Mass Conservation, which is simplified as follows:


By replacing all known variables:

The positive sign of the rate of change of the tank level indicates a rising behaviour.
Answer:
So airplane will be 1324.9453 m apart after 2.9 hour
Explanation:
So if we draw the vectors of a 2d graph we see that the difference in angles is = 83 - 44.3 = 
Distance traveled by first plane = 730×2.9 = 2117 m
And distance traveled by second plane = 590×2.9 = 1711 m
We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 38.7.
Using the law of cosine,
representing the distance between the planes, we see that:

d = 1324.9453 m
120 acceleration oh yeah i am sure about this
Answer:
2697.75N/m
Explanation:
Step one
This problem bothers on energy stored in a spring.
Step two
Given data
Compression x= 2cm
To meter = 2/100= 0.02m
Mass m= 0.01kg
Height h= 5.5m
K=?
Let us assume g= 9.81m/s²
Step three
According to the principle of conservation of energy
We know that the the energy stored in a spring is
E= 1/2kx²
1/2kx²= mgh
Making k subject of formula we have
kx²= 2mgh
k= 2mgh/x²
k= (2*0.01*9.81*5.5)/0.02²
k= 1.0791/0.0004
k= 2697.75N/m
Hence the spring constant k is 2697.75N/m