Answer:
200000 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) of roller coaster = 1000 Kg
Velocity (v) of roller coaster = 20 m/s
Kinetic energy (KE) =?
Kinetic energy is simply defined as the energy possess by an object in motion. Mathematically, it can be expressed as:
KE = ½mv²
Where
KE => is the kinetic energy.
m =>is the mass of the object
V => it the velocity of the object.
With the above formula, we can obtain the kinetic energy of the roller coaster as follow:
Mass (m) of roller coaster = 1000 Kg
Velocity (v) of roller coaster = 20 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 1000 × 20²
KE = 500 × 400
KE = 200000 J
Therefore, the kinetic energy of the roller coaster is 200000 J.
Answer:
a. when the acceleration of the objects become negative
Answer:
Rate = vmax k3/k2+k3
Explanation:
The rate of reaction when the enzyme is saturated with substrate is the maximum rate of reaction, is referred to as Vmax.
This is usually expressed as the Km ie. Michaelis constant of the enzyme, an inverse measure of affinity. For practical purposes, Km is the concentration of substrate which permits the enzyme to achieve half Vmax.
Please kindly check attachment for the step by step solution of the given problem.
Answer:
The pressure exerted by the woman on the floor is 1.9061 x 10⁷ N/m²
Explanation:
Given;
mass of the woman, m = 55 kg
diameter of the circular heel, d = 6.0 mm
radius of the heel, r = 3.0 mm = 0.003 m
Cross-sectional area of the heel is given by;
A = πr²
A = π(0.003)²
A = 2.8278 x 10⁻⁵ m²
The weight of the woman is given by;
W = mg
W = 55 x 9.8
W = 539 N
The pressure exerted by the woman on the floor is given by;
P = F / A
P = W / A
P = 539 / (2.8278 x 10⁻⁵ )
P = 1.9061 x 10⁷ N/m²
Therefore, the pressure exerted by the woman on the floor is 1.9061 x 10⁷ N/m²
The energy carried by a photon is equal to
(Planck's Konstant) times (the frequency of the photon) .
Planck's konstant is 6.626 x 10⁻³⁴ m²-kg/s (rounded)