Answer:
a. True
Explanation:
Distance is described with only magnitude. It is defined as the total path covered by an object, in other words it is the length of a path followed by a particle.
Displacement is described with both magnitude and direction. It is distance traveled in a specified direction or change in position in some time interval.
Therefore, the correct option is " a. True"
363 m/s is the speed of sound through the air in the pipe.
Answer: Option B
<u>Explanation:</u>
The formula used to calculate the wavelength given as below,
--------> eq. 1
In power system, harmonics define by positive integers of the fundamental frequency. So the third order harmonic is a multiple of the third fundamental frequency. Each harmonic creates an additional node and an opposite node, as well as an additional half wave within the string.
If the number of waves in the circuit is known, the comparison between standing wavelength and circuit length can be calculated algebraically. The general expression for this given as,
For first harmonic, n =1
For second harmonic, n =2
For third harmonic, n =3
-------> eq. 2
Here given f = 939 Hz, L = 0.58 m...And, substitute eq 2 in eq 1 and values, we get
Explanation:
This difference is because of the difference in arrangement of carbon atoms both graphite and Diamond.
Carbon atoms in graphite are arranged in layered form in an infinite array of layers. These layers are held together by a weaker force of attraction called vander waal's force of attraction such that layer's can slip over one another. Whereas in diamond carbon atoms are arranged tetrahedrally. Each carbon atom is attached to four carbon atoms with a bond angle of 109.5°. It is strong rigid three dimensional structure that results in infinite array atoms. This accounts for hardness of the diamond.
Answer:
The speed of the vehicles immediately after the collision is 5.84 m/s.
Explanation:
The speed of the vehicles after the collision can be found by conservation of linear momentum:
Where:
m₁: is the mass of the car = 0.5 ton = 500 kg
m₂: is the mass of the lorry = 9.5 ton = 9500 kg
: is the initial speed of the car = 40 km/h = 11.11 m/s
: is the initial speed of the lorry = 20 km/h = 5.56 m/s
: is the final speed of the car =?
: is the final speed of the lorry =?
Since the two vehicles become tightly locked together after the collision = :
Therefore, the speed of the vehicles immediately after the collision is 5.84 m/s.
I hope it helps you!