1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
14

How to find volocity

Physics
1 answer:
horrorfan [7]3 years ago
5 0

Explanation:

you need to divide rhe change un position by the change in time

You might be interested in
As an tempature decreases what happens to the rate of radiation?
Firlakuza [10]
As the temperature decreases, the rate of radiation goes down, but the radiation exists as long as the temperature is above the absolute zero, which is actually 0 Kelvin. 0 Kelvin equals -273°C or -460°F. All objects in the world radiate if above that temperature.
5 0
3 years ago
Which of the following is an obstacle to creating computer-based models for tracking a hurricane?
iren [92.7K]

Answer:

4. All of the above I think, not to sure about 1. but the rest are right so im like 90.99999 percent sure good luck

5 0
3 years ago
A planet moves fastest in its orbit around the sun when it is at which position?
Nesterboy [21]

Answer:

When it's closest to the sun.

Explanation:

The force of gravity acting on a planet is equal to its mass times its centripetal acceleration.

Fg = m v^2 / r

The force of gravity is defined by Newton's law of universal gravitation as:

Fg = mMG / r^2

Therefore:

mMG / r^2 = m v^2 / r

MG / r = v^2

v increases as r decreases.  So the planet is moving fastest when it's closest to the sun, also known as the <em>perihelion</em>.

6 0
3 years ago
Read 2 more answers
2. Two identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of 12 x 10-9 C and the oth
Maru [420]

Answer:

A. -2.16 * 10^(-5) N

B. 9 * 10^(-7) N

Explanation:

Parameters given:

Distance between their centres, r = 0.3 m

Charge in first sphere, Q1 = 12 * 10^(-9) C

Charge in second sphere, Q2 = -18 * 10^(-9) C

A. Electrostatic force exerted on one sphere by the other is:

F = (k * Q1 * Q2) / r²

F = (9 * 10^9 * 12 * 10^(-9) * -18 * 10^(-9)) / 0.3²

F = -2.16 * 10^(-5) N

B. When they are brought in contact by a wire and are then in equilibrium, it means they have the same final charge. That means if we add the charges of both spheres and divided by two, we'll have the final charge of each sphere:

Q1 + Q2 = 12 * 10^(-9) + (-18 * 10^(-9))

= - 6 * 10^(-9) C

Dividing by two, we have that each sphere has a charge of -3 * 10^(-9) C

Hence the electrostatic force between them is:

F = [9 * 10^9 * (-3 * 10^(-9)) * (-3 * 10^(-9)] / 0.3²

F = 9 * 10^(-7) N

7 0
3 years ago
An ice cube at 0c was dropped into 30.0 g of water in a cup at 45.0c. at the instant that all of the ice was melted, the tempera
Ede4ka [16]
The amount of heat given by the water to the block of ice can be calculated by using
Q=m_w C_{sw} \Delta T_w
where 
m_w = 30 g is the mass of the water
C_{sw}=4.18 J/(g ^{\circ}C) is the specific heat capacity of water
\Delta T_w = 45.0^{\circ}-19.5^{\circ}C = 20.5^{\circ}C is the variation of temperature of the water.

Using these numbers, we find
Q=(30 g)(4.18 J/(g^{\circ}C))(20.5^{\circ}C)=2571 J

This is the amount of heat released by the water, but this is exactly equal to the amount of heat absorbed by the ice, used to melt it into water according to the formula:
Q = m_i L_f
where m_i is the mass of the ice while L_f =334 J/g is the specific latent heat of fusion of the ice.
Re-arranging this formula and using the heat Q that we found previously, we can calculate the mass of the ice:
m_i =  \frac{Q}{L_f}= \frac{2571 J}{334 J/g} =7.7 g
3 0
3 years ago
Other questions:
  • Can someone explain subshell/electron configuration to me?
    14·1 answer
  • Use the drop-down menus to complete the paragraph,
    5·2 answers
  • At 30.0 m below the surface of the sea (density = 1 025 kg/m3), where the temperature is 5.00°C, a diver exhales an air bubble h
    11·1 answer
  • Answer the three questions below that pertain to atomic orbitals. Part A: No two electrons can have the same set of quantum numb
    12·1 answer
  • Which of these changes would likely occur if the rate of Earth's rotation on its axis decreased? The length of day would be shor
    15·1 answer
  • One fine summer day a group of students was jumping from a railroad bridge into the river below. They stepped off the bridge wit
    6·1 answer
  • A force of 12 N changes the momentum of a toy car from 3kgm/s t0 10kgm/s. Calculate the time the force took to produce this chan
    6·1 answer
  • 50 POINTS!! BRAINLEST
    13·2 answers
  • Urgent help needed with Physics
    5·1 answer
  • 10) For a horizontally launched projectile, decreasing the velocity of the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!