Answer:
74mL
Explanation:
Given parameters:
Molar mass of citric acid = 192g/mol
Molar mass of baking soda = 84g/mol
Concentration of citric acid = 0.8M
Mass of baking powder = 15g
Unknown parameters:
Volume of citric acid = ?
Solution
Equation of the reaction:
C₆H₈O₇ + 3NaHCO₃ → Na₃C₆H₅O₇ + 3H₂O + 3CO₂
Procedure:
- We work from the known parameters to the unknown. From the statement of the problem, we can approach the solution from the parameters of the baking powder.
- From the baking powder, we can establish a molar relationship between the two reactants. We employ the mole concept in this regard.
- We find the number of moles of the baking powder that went into the reaction using the expression below:
Number of moles = 
Number of moles =
= 0.179mole
- From the equation of the reaction, we can find the number of moles of the citric acid:
3 moles of baking powder reacted with 1 mole of citric acid
0.179 moles of baking powder would react with
:
This yields 0.059mole of citric acid
- To find the volume of the citric acid, we use the mole expression below:
Volume of citric acid = 
Volume of citric acid =
= 0.074L
Expressing in mL gives 74mL
Answer:
K2Cr2O7
Explanation:
Solubility refers to the amount of substance that dissolves in a given mass or volume of solvent. There are several units of solubility applicable in different areas.
Solubility is dependent on temperature. The solubility curve is a graphical representation of the dependence of solubility on temperature for different chemical species.
If we study the solubility curve closely, we will see that K2Cr2O7 has the highest solubility at 100°C. This means that if the trends continue, this substance will also have the highest solubility at 120°C.
Answer:
For gases such as hydrogen, oxygen, nitrogen, helium, or neon, deviations from the ideal gas law are less than 0.1 percent at room temperature and atmospheric pressure. Other gases, such as carbon dioxide or ammonia, have stronger intermolecular forces and consequently greater deviation from ideality.
Explanation:
Answer:
Mass = 42.8g
Explanation:
4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Observe that every 4 mole of ammonia requires 5 moles of oxygen to obtain 4 moles of Nitrogen oxide and 6 moles of water.
Step 1: Determine the balanced chemical equation for the chemical reaction.
The balanced chemical equation is already given.
Step 2: Convert all given information into moles (through the use of molar mass as a conversion factor).
Ammonia = 63.4g × 1mol / 17.031 g = 3.7226mol
Oxygen = 63.4g × 1mol / 32g = 1.9813mol
Step 3: Calculate the mole ratio from the given information. Compare the calculated ratio to the actual ratio.
If all of the 1.9831 moles of oxygen were to be used up, there would need to be 1.9831 × 4 / 5 or 1.5865 moles of Ammonia. We have 3.72226 moles of ammonia - Far excess. Because there is an excess of Ammonia, the Oxygen amount is used to calculate the amount of the products in the reaction.
Step 4: Use the amount of limiting reactant to calculate the amount of H2O produced.
5 moles of O2 = 6 moles of H2O
1.9831 moles = x
x = (1.9831 * 6 ) / 5
x = 2.37972 moles
Mass of H2O = Molar mass * Molar mass
Mass = 2.7972 * 18
Mass = 42.8g
Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2