100/2.5 because power=energy/time
Answer:
50 N
Explanation:
Since the refrigerator doesn’t move, that means the force of friction equals the amount of force the child exerts on the fridge. If the friction force were greater than the force by the child, the fridge would start accelerating towards the child. If it were less than the force the child exerted, the fridge would start accelerating away from the child. Therefore, the net force must be 0, in this case, the friction force is equal to the force the child exerted, for it to stay at rest (as Newton’s First Law stated).
I hope this helps! :)
X Represents the distance the spring is stretched or compressed away from its equilibrium or rest position.
Answer:
See Explanation
Explanation:
The principle of conservation of energy states that; energy can neither be created nor destroyed but is converted from one form to another.
In view of this principle, Ella can not be correct when she says that a lot of energy has disappeared. The use of the term "disappeared" connotes the idea that the energy no longer exists which does not happen.
Hence, energy can not "disappear" from hot water rather the energy in the water may be transferred to the surroundings.
Answer:
The temperature must the ring be heated so that the sphere can just slip through is 106.165 °C.
Explanation:
For brass:
Radius = 1.3590 cm
Initial temperature = 23.0 °C
The sphere of radius 1.3611 cm must have to slip through the brass. Thus, on heating the brass must have to attain radius of 1.3611 cm
So,
Δ r = 1.3611 cm - 1.3590 cm = 0.0021 cm
<u>The linear thermal expansion coefficient of a metal is the ratio of the change in the length per 1 degree temperature to its length.</u>
<u>Thermal expansion for brass = 19×10⁻⁶ °C⁻¹</u>
Thus,

Also,

So,

Solving for final temperature as:

<u>Final temperature = 106.165 °C</u>