To develop this problem it is necessary to use the equations of description of the simple harmonic movement in which the acceleration and angular velocity are expressed as a function of the Amplitude.
Our values are given as


The angular velocity of a body can be described as a function of frequency as



PART A) The expression for the maximum angular velocity is given by the amplitude so that



PART B) The maximum acceleration on your part would be given by the expression



a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s .The amplitude of the subsequent oscillations 48.13 cm/s
a 1.25 kilogram block is fastened to a spring with a 17.0 newtons per meter spring constant. Given that K is equal to 14 Newtons per meter and mass equals 10.5 kg. The block is then struck with a hammer by a student while it is at rest, giving it a speedo of 46.0 cm for a brief period of time. The required energy provided by the hammer, which is half mv squared, is transformed into potential energy as a result of the succeeding oscillations. This is because we know that energy is still available for consultation. So access the amplitude here from here. He will therefore be equal to and by. Consequently, the Newton's spring constant is 14 and the value is 10.5. The velocity multiplied by 0.49
Speed at X equals 0.35 into amplitude, or vice versa. At this point, the spirit will equal half of K X 1 squared plus half. Due to the fact that this is the overall energy, square is equivalent to half of a K square or an angry square. amplitude is 13 and half case 14 x one is 0.35. calculate that is equal to initial velocities of 49 squares and masses of 10.5. This will be divided in half and start at about 10.5 into the 49-square-minus-14. 13.42 into the entire square in 20.35. dividing by 10.5 and taking the square as a result. 231 6.9 Six centimeters per square second. 10.5 into 49 sq. 14. 2 into a 13.42 square entire. then subtract 10.5 from the result to get the square. So that is 48.13cm/s.
To learn more about oscillations Please click on the given link:
brainly.com/question/26146375
#SPJ4
This is incomplete question Complete Question is:
a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s . what are The amplitude of the subsequent oscillations?

The most effective forces on the object are the backward force of air resistance relatively very small in magnitude, and the force of gravity. Because the spiral path of the satellite is not perpendicular to the gravitational force, one element of the gravitational force pulls forward. at the satellite to do fantastic work & make its speed increase.
<h3>What is called gravitational force?</h3>
Gravity, additionally referred to as gravitation, is a force that exists amongst all material gadgets withinside the universe. For any objects or particles having nonzero mass, the force of gravity tends to draw them in the direction of each other. Gravity operates on objects of all sizes, from subatomic particles to clusters of galaxies.
To learn more about gravitational force, visit;
brainly.com/question/9266911
#SPJ4
If it takes

seconds to reach the car, then the distance

is

.
The bear's distance from the tourist's starting point is

For maximum

, we set the equations equal to each other:



so the distance is
Answer:
approximately 5.8 seconds
Explanation:
if you where to time how fast a rock would fall 12 meters it would approximately be 5.8 seconds