1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
3 years ago
15

The resistivity of gold is at room temperature. A gold wire that is 0.9 mm in diameter and 14 cm long carries a current of 940 m

A. What is the electric field in the wire?
Physics
2 answers:
IgorC [24]3 years ago
6 0

Answer:

0.0360531138247 V/m

Explanation:

\rho = Resistivity of gold = 2.44\times 10^{-8}\ \Omega .m (General value)

I = Current = 940 mA

d = Diameter = 0.9 mm

A = Area = \dfrac{\pi}{4}d^2

E = Electric field

Resistivity is given by

\rho=\dfrac{EA}{I}\\\Rightarrow E=\dfrac{\rho I}{A}\\\Rightarrow E=\dfrac{2.44\times 10^{-8}\times 940\times 10^{-3}}{\dfrac{\pi}{4}(0.9\times 10^{-3})^2}\\\Rightarrow E=0.0360531138247\ V/m

The  electric field in the wire is 0.0360531138247 V/m

Andreas93 [3]3 years ago
4 0

Answer:

Explanation:

Current in the wire, i = 940 mA = 0.94 A

Length of the wire, l = 14 cm = 0.14 m

diameter of wire = 0.9 mm

radius of wire, r = 0.45 mm = 0.45 x 10^-3 m

resistivity of gold, ρ = 2.44 x 10^-8 ohm metre

Let R is the resistance of the wire.

R = \rho \times \frac{l}{A}

R = 2.44\times 10^{-8}\times \frac{0.14}{3.14\times 0.45\times 0.45\times 10^{-6}}

R = 5.37 x 10^-3 ohm

By the Ohm's law

V = i x R

V = 0.94 x 5.37 x 10^-3

V = 5.05 x 10^-3 V

E = V / l = (5.05 x 10^-3) / 0.14 = 0.036 V/m

You might be interested in
. During a collision with a wall, the velocity of a 0.200-kg ball changes from 20.0 m/s toward the wall to 12.0 m/s away from th
mixer [17]

Answer:

106.7 N

Explanation:

We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

F \Delta t = m (v-u)

where

F is the average force

\Delta t is the duration of the collision

m is the mass of the ball

v is the final velocity

u is the initial velocity

In this problem:

m = 0.200 kg

u = 20.0 m/s

v = -12.0 m/s

\Delta t = 60.0 ms = 0.06 s

Solving for F,

F=\frac{m(v-u)}{\Delta t}=\frac{(0.200 kg) (-12.0 m/s-20.0 m/s)}{0.06 s}=-106.7 N

And since we are interested in the magnitude only,

F = 106.7 N

5 0
3 years ago
Read 2 more answers
8.) If a car moving at 50km/h skids 15m with locked brakes, how far does the same car moving at 100km/h
pantera1 [17]

(8) A car starting with a speed <em>v</em> skids to a stop over a distance <em>d</em>, which means the brakes apply an acceleration <em>a</em> such that

0² - <em>v</em>² = 2 <em>a</em> <em>d</em> → <em>a</em> = - <em>v</em>² / (2<em>d</em>)

Then the car comes to rest over a distance of

<em>d</em> = - <em>v</em>² / (2<em>a</em>)

Doubling the starting speed gives

- (2<em>v</em>)² / (2<em>a</em>) = - 4<em>v</em>² / (2<em>a</em>) = 4<em>d</em>

so the distance traveled is quadrupled, and it would move a distance of 4 • 15 m = 60 m.

Alternatively, you can explicitly solve for the acceleration, then for the distance:

A car starting at 50 km/h ≈ 13.9 m/s skids to a stop in 15 m, so locked brakes apply an acceleration <em>a</em> such that

0² - (13.9 m/s)² = 2 <em>a</em> (15 m) → <em>a</em> ≈ -6.43 m/s²

So the same car starting at 100 km/h ≈ 27.8 m/s skids to stop over a distance <em>d</em> such that

0² - (27.8 m/s)² = 2 (-6.43 m/s²) <em>d</em> → <em>d</em> ≈ 60 m

(9) Pushing the lever down 1.2 m with a force of 50 N amounts to doing (1.2 m) (50 N) = 60 J of work. So the load on the other end receives 60 J of potential energy. If the acceleration due to gravity is taken to be approximately 10 m/s², then the load has a mass <em>m</em> such that

60 J = <em>m g h</em>

where <em>g</em> = 10 m/s² and <em>h</em> is the height it is lifted, 1.2 m. Solving for <em>m</em> gives

<em>m</em> = (60 J) / ((10 m/s²) (1.2 m)) = 5 kg

(10) Is this also multiple choice? I'm not completely sure, but something about the weight of the tractor seems excessive. It would help to see what the options might be.

4 0
3 years ago
What is the series equivalent of two 1000 W resistors in series?
aleksandrvk [35]
The equivalent resistance when two resistors are connected in series is
the sum of their individual resistances.

The marking on the resistor that says "1000 W" is the rating that tells
how much power the resistor can safely dissipate, without overheating
or exploding. (The 'W' stands for 'Watts'.)  It doesn't tell us anything about
their individual resistances. So we don't have enough information to calculate
their series equivalent.
5 0
3 years ago
Three long, straight wires are carrying currents that have the same magnitude. In C the current is opposite to that in A and B.
Nadusha1986 [10]

Answer:

(b) B

Explanation:

The direction of force on a current carrying wire in a magnetic field can be found using the right hand rule, which states that-"stretch the thumb in the direction of the current, and point the fingers in the direction of magnetic field. The direction of palm will then give the direction of force on the wire

On wire B the forces due to A and C act in the same direction and so strengthen each other. they get added up because the forces act in the same direction.

on wires A and C the forces (due to B and C and A and B

respectively) act in opposite directions and therefore tend to cancel out.

5 0
3 years ago
Mount Everest rises to a height of 8,850 m above sea level. At a base camp on the mountain the atmospheric pressure is measured
Mamont248 [21]

Answer:

74.86°C

Explanation:

P₂ = Vapour pressure of water at sea level = 760 mmHg

P₁ = Pressure at base camp = 296 mmHg

T₂ = Temperature of water = 373 K

ΔH°vap for H2O = 40.7 kJ/mol = 40700 J/mol

R = Gas constant = 8.314 J/mol K

From Claussius Clapeyron equation

ln\frac{P_2}{P_1}=\frac{\Delta H}{R}\left(\frac{1}{T_1}-\frac{1}{T_2}\right)\\\Rightarrow ln\frac{760}{296}=\frac{40700}{8.314}\left(\frac{1}{T_1}-\frac{1}{373}\right)\\\Rightarrow ln\frac{760}{296}\times \frac{8.314}{40700}+\frac{1}{373}=\frac{1}{T_1}\\\Rightarrow 0.0028735=\frac{1}{T_1}\\\Rightarrow T_1=347.996\ K

T₁ = 347.996 K = 74.86°C

∴Water will boil at 74.86°C

4 0
3 years ago
Other questions:
  • 10. A girl pulls a wagon along a level path for a distance of 44 m. The handle of
    6·1 answer
  • Calculate the required rate of return for Climax Inc., assuming that (1) investors expect a 4.0% rate of inflation in the future
    5·1 answer
  • If the tensile strength of the Kevlar 49 fibers is 0.550 x 106 psi and that of epoxy resin is 11.0 x103 psi, calculate the stren
    5·1 answer
  • How high was a brick dropped from if if falls in 2.5 seconds?
    7·1 answer
  • Pls help me with science
    15·1 answer
  • What to do when having a cold
    13·2 answers
  • What is the measure of the energy transformed between two points in an electric circuit is:
    12·1 answer
  • A 0.144-kg baseball is moving toward home plate with a speed of 43 m/s when
    7·1 answer
  • Car B is rounding the curve with a constant speed of 54 km/h, and car A is approaching car B in the intersection with a constant
    6·1 answer
  • object x and y fall from a same height and object x is heavier than y which object would fall faster qnd y​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!