B = magnetic field in the cyclotron = 0.400 T
q = magnitude of charge on a proton = 1.6 x 10⁻¹⁹ C
m = mass of the proton = 1.67 x 10⁻²⁷ kg
f = frequency of revolution of proton in the cyclotron = ?
v = speed of electromagnetic waves = 3 x 10⁸ m/s
λ = wavelength of electromagnetic wave = ?
Frequency of revolution of proton in the cyclotron is given as
f = qB/(2πm)
inserting the values
f = (1.6 x 10⁻¹⁹)(0.400)/(2 (3.14) (1.67 x 10⁻²⁷))
f = 6.1 x 10⁶ Hz
wavelength of electromagnetic wave is given as
λ = v/f
λ = (3 x 10⁸)/(6.1 x 10⁶)
λ = 49.2 m
Answer:
im pretty sure its 10 m/s but its kinda hard sorry
Explanation:
Answer:
did u know there's no such thing as "pear cider."
Explanation:
Answer:
a) X = 17.64 m
b) X = 17.64 + 4∆t^2 + 16.8∆t
c) Velocity = lim(∆t→0)〖∆X/∆t〗 = 16.8 m/s
Explanation:
a) The position at t = 2.10s is:
X = 4t^2
X = 4(2.10)^2
X = 17.64 m
b) The position at t = 2.10 + ∆t s will be:
X = 4(2.10 + ∆t)^2
X = 17.64 + 4∆t^2 + 16.8∆t m
c) ∆X is the difference between position at t = 2.10s and t = 2.10 + ∆t so,
∆X= 4∆t^2 + 16.8∆t
Divide by ∆t on both sides:
∆X/∆t = 4∆t + 16.8
Taking the limit as ∆t approaches to zero we get:
Velocity =lim(∆t→0)〖∆X/∆t〗 = 4(0) + 16.8
Velocity = 16.8 m/s
Answer:
Explanation:
a )
Energy stored by left spring when compressed = 1/2 k x²
= .5 x 10 x .02² = .002 J .
Let compression in right spring = y
energy stored to right spring = 1/2 k y²
1/2 k y² = 0.002
.5 x 20 x y² = 0.002
y = .01414 m
= 1.4 cm