If a ship will be sailing through warm and cold water, people think about making it less dense than the warmest water as they load the ship with cargo. I think you forgot to give the options along with the question. I hope that this is the answer that has actually come to your desired help.
Answer:
The correct option is b) In galaxy clusters
Explanation:
A type of galaxy that appear elliptical in shape and have an almost featureless and smooth image is known as the elliptical galaxy.
An elliptical galaxy is three dimensional and consists of more than one hundred trillion stars which are present in random orbits around the centre.
Elliptical galaxy is generally found in the galaxy clusters.
Answer:
10.2 Watt
Explanation:
= number of turns in flat coil = 160
= area = 0.20 m²
B₀= initial magnetic field = 0.40 T
= final magnetic field = - 0.40 T
Change in magnetic field is given as
ΔB = B - B₀ = - 0.40 - 0.40 = - 0.80 T
= time taken for the magnetic field to change = 2.0 s
Induced emf is given as


= 12.8 volts
= Resistance of the coil = 16 Ω
Power is given as


= 10.2 Watt
1) In the first case, the correct answer is
<span>A.Wavelengths measured would match the actual wavelengths emitted.
In fact, the stars are not moving relative to Earth, so there is no shift in the measured wavelength.
2) In this second case, the correct answer is
</span><span>A.Wavelengths measured would be shorter than the actual wavelengths emitted.
</span>in fact, since the stars in this case are moving towards the Earth, then apparent frequency of their emitted light will be larger than the actual frequency, because of the Doppler effect, according to the formula:

where f0 is the actual frequency, f' the apparent frequency, c the speed of light and vs the velocity of the source (the stars) relative to the obsever (Earth). Vs is negative when the source is moving towards the observer, so the apparent frequency f' is larger than the actual frequency f0. But the wavelength is inversely proportional to the frequency, so the apparent wavelength will be shorter than the actual wavelength.
Answer: The correct answer would be a complex system.
Explanation: