50 degrees because the would most likely equal out
Answer:
The tension on the clotheslines is 
Explanation:
The diagram illustrating this question is shown on the first uploaded image
From the question we are told that
The distance between the two poles is 
The mass tie to the middle of the clotheslines 
The length at which the clotheslines sags is 
Generally the weight due to gravity at the middle of the clotheslines is mathematically represented as
let the angle which the tension on the clotheslines makes with the horizontal be
which mathematically evaluated using the SOHCAHTOA as follows

=> ![\theta = tan^{-1}[\frac{4}{6} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20tan%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7B6%7D%20%5D)
=> 
So the vertical component of this tension is mathematically represented a

Now at equilibrium the net horizontal force is zero which implies that

=> 
substituting values

substituting values


Answer:
(1) The maximum air temperature is 1383.002 K
(2) The rate of heat addition is 215.5 kW
Explanation:
T₁ = 17 + 273.15 = 290.15

T₂ = 290.15 × 3.17767 = 922.00139

Therefore,
T₃ = T₂×1.5 = 922.00139 × 1.5 = 1383.002 K
The maximum air temperature = T₃ = 1383.002 K
(2)


Therefore;


Q₁ = 1.005(1383.002 - 922.00139) = 463.306 kJ/jg
Heat rejected per kilogram is given by the following relation;
= 0.718×(511.859 - 290.15) = 159.187 kJ/kg
The efficiency is given by the following relation;

Where:
β = Cut off ratio
Plugging in the values, we get;

Therefore;


Heat supplied = 
Therefore, heat supplied = 215491.064 W
Heat supplied ≈ 215.5 kW
The rate of heat addition = 215.5 kW.
Answer:
A - Watt
Explanation:
Watt is the unit of electrical power in a metric system, expressed in terms of energy per second, equal to the work done at a rate of 1 joule per second is
power formula is P = V × I,
where V is the voltage in a circuit
I is the current flowing through that circuit.
In the SI (metric) system, the units of power are watts.
To continue moving at constant speed in a straight line requires NO net force. Zero. Nada. If there IS any net force on the object, then its speed or direction will change.