The answer would be .5 mols because you take the total amount of grams, which is 20, and you had up the molar mass of sodium hydroxide, which would be 40. After you have this you would set this up as a stochiometry equation. With 1 mol on top you dived 20/40 to cancel out your grams. This leaves you with .5 mols
Answer:
Partial pressure of CO₂ is 406.9 mmHg
Explanation:
To solve the question we should apply the concept of the mole fraction.
Mole fraction = Moles of gas / Total moles
We have the total moles of the mixture, if we have the moles for each gas inside. (3.63 moles of O₂, 1.49 moles of N₂ and 4.49 moles of CO₂)
Total moles = 3.63 mol O₂ + 1.49 mol N₂ + 4.49 mol CO₂ = 9.61 moles
To determiine the partial pressure of CO₂ we apply
Mole fraction of CO₂ → mol of CO₂ / Total moles = P. pressure CO₂ / Total P
Partial pressure of CO₂ = (mol of CO₂ / Total moles) . Total pressure
We replace values: (4.49 moles / 9.61 moles) . 871 mmHg = 406.9 mmHg
Explanation:
Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. ... Electric charge is carried by subatomic particles. In ordinary matter, negativecharge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms.
Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. There are two types of electric charge: positive and negative (commonly carried by protons and electrons respectively). Like charges repel and unlike attract. An object with an absence of net charge is referred to as neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.
Answer:
<u><em></em></u>
- <u><em>C) How much energy was added to the substance to increase molecule motion? </em></u>
Explanation:
<em>The most relevant question to ask regarding this change</em> must take into account the physical knowledge about matter.
When matter changes from<em> liquid </em>state to <em>gaseous</em> state, a physical change called evaporation, the particles (molecules or atoms) of the <em>pure substance </em>will separate from each other, take up more space and move faster.
<em>Condensation</em> is the opposite to evaporation, thus the option A) is not the most relevant question.
<em>The charge of the particles</em> does not change; so the option B) is not relevant at all.
The particles should gain energy from the surroundings to <em>increase</em> their <em>motion</em> (kinetic energy) when they pass from liquid state, where they move slower, to gas state, where they move faster. Hence, the option<em> C), How much energy was added to the substance to increase molecule motion?</em> , is totally relevant.
Since this is an increase in the <em>kinetic energy of the molecules</em>, the option D) is not relevant.