1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gogolik [260]
3 years ago
7

A 2 kg car accelerated from 10 m's to 20 m/s using a force of 3000N. How quickly did it

Physics
1 answer:
elena-14-01-66 [18.8K]3 years ago
7 0

Answer:

the car accelerates in

\frac{1}{150}  \: or \: 0.006 \: second

Explanation:

here's the solution : -

we know,

=》

force = mass   \times acceleration

=》

acceleration =  \frac{force}{mass}

=》

a  =  \frac{3000}{2}

=》

a = 1500

so, acceleration = 1500 m/s^2

now,

=》

a =  \frac{v - u}{t}

here, a = acceleration, v = final velocity,

u = initial velocity, t = time taken.

So,

=》

1500 =  \frac{20 - 10}{t}

=》

1500 =  \frac{10}{t}

=》

t =  \frac{10}{1500}

=》

t = 0.006 \: sec

You might be interested in
Which one of the following substances is a liquid fuel used in rocket engines?
melomori [17]

There are none on the list you included with your question.

8 0
4 years ago
Read 2 more answers
PLZ HELP I WILL GIVE BRAINLIEST
Vaselesa [24]

Answer:

12.7m/s

Explanation:

Given parameters:

Mass of diver  = 77kg

Height of jump  = 8.18m

Unknown:

Final velocity  = ?

Solution:

To solve this problem, we apply the motion equation below:

             v²   = u²  + 2gH

v is the final velocity

u is the initial velocity

g is the acceleration due to gravity

H is the height

 Now insert the parameters and solve;

       v² = 0²  +  2 x 9.8 x 8.18

     v  = 12.7m/s

8 0
3 years ago
9. A 5.0 kg block on an inclined plane is acted upon by a horizontal force of 100 N shown in the figure below. The coefficient o
Helga [31]

Answer:

A: The acceleration is 7.7 m/s up the inclined plane.

B: It will take the block 0.36 seconds to move 0.5 meters up along the inclined plane

Explanation:

Let us work with variables and set

m=5kg\\\\F_H=100N\\\\\mu=0.3\\\\\theta=37^o.

As shown in the attached free body diagram, we choose our coordinates such that the x-axis is parallel to the inclined plane and the y-axis is perpendicular. We do this because it greatly simplifies our calculations.

Part A:

From the free body diagram we see that the total force along the x-axis is:

F_{tot}=mg*sin(\theta)+F_s-F_Hcos(\theta).

Now the force of friction is F_s=\mu*N, where N is the normal force and from the diagram it is F_y=mg*cos(\theta).

Thus F_s=\mu*N=\mu*mg*cos(\theta).

Therefore,

F_{tot}=mg*sin(\theta)+\mu*mg*cos(\theta)-F_Hcos(\theta)\\\\=mg(sin(\theta)+\mu*cos(\theta))-F_Hcos(\theta).

Substituting the value for F_H,m,\mu, and \:\theta we get:

F_{tot}= -38.63N.

Now acceleration is simply

a=\frac{F_H}{m} =\frac{-38.63N}{5kg} =-7.7m/s.

The negative sign indicates that the acceleration is directed up the incline.

Part B:

d=\frac{1}{2} at^2

Which can be rearranged to solve for t:

t=\sqrt{\frac{2d}{a} }

Substitute the value of d=0.50m and a=7.7m/s and we get:

t=0.36s.

which is our answer.

Notice that in using the formula to calculate time we used the positive value of a, because for this formula absolute value is needed.

5 0
4 years ago
A student makes a short electromagnet by winding 300 turns of wire around a wooden cylinder of diameter d 5.0 cm. The coil is co
kupik [55]

Answer:

A) μ = A.m²

B) z = 0.46m

Explanation:

A) Magnetic dipole moment of a coil is given by; μ = NIA

Where;

N is number of turns of coil

I is current in wire

A is area

We are given

N = 300 turns; I = 4A ; d =5cm = 0.05m

Area = πd²/4 = π(0.05)²/4 = 0.001963

So,

μ = 300 x 4 x 0.001963 = 2.36 A.m².

B) The magnetic field at a distance z along the coils perpendicular central axis is parallel to the axis and is given by;

B = (μ_o•μ)/(2π•z³)

Let's make z the subject ;

z = [(μ_o•μ)/(2π•B)] ^(⅓)

Where u_o is vacuum permiability with a value of 4π x 10^(-7) H

Also, B = 5 mT = 5 x 10^(-6) T

Thus,

z = [ (4π x 10^(-7)•2.36)/(2π•5 x 10^(-6))]^(⅓)

Solving this gives; z = 0.46m =

3 0
3 years ago
The fulcrum is between the effort and the load
Inessa05 [86]

Class 1 lever

Explanation:

In a class 1 lever, the fulcrum is placed between the effort and the load. This lever systems is the most common.

  • The effort is the force input and the load is the force output
  • The fulcrum is a hinge between the load and effort.
  • Movement of the effort and load are in opposite directions.
  • There are other classes of lever like the class 2 and 3.
  • They all have different load, fulcrum and effort configurations

learn more:

Load related problems brainly.com/question/9202964

Torque brainly.com/question/5352966

#learnwithBrainly

3 0
4 years ago
Other questions:
  • How is p-n-p transistor biased to operate in the active mode​
    7·1 answer
  • Batteries transform ______________ energy into mechanical energy.
    14·2 answers
  • Whats the difference between watts, amps, and volts?
    9·1 answer
  • A stone is dropped into a river from a bridge 41.7 m above the water. Another stone is thrown vertically down 1.80 s after the f
    6·1 answer
  • What is gluteus maximum
    12·2 answers
  • Fish, poultry, lean meats, and nuts should be consumed for which of the following nutrients? A. calcium B. carbohydrates C. prot
    6·2 answers
  • 8
    15·1 answer
  • Why do we not feel air pressure?
    14·2 answers
  • Do man made elements have a greater number than natural elements
    7·1 answer
  • Meteorologists are interested in the relationship between minimum pressure and maximum wind speed
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!