(a) The system of interest if the acceleration of the child in the wagon is to be calculated are the wagon and the children outside the wagon.
(b) The acceleration of the child-wagon system is 0.33 m/s².
(c) Acceleration of the child-wagon system is zero when the frictional force is 21 N.
<h3>
Net force on the third child</h3>
Apply Newton's second law of motion;
∑F = ma
where;
- ∑F is net force
- m is mass of the third child
- a is acceleration of the third child
∑F = 96 N - 75 N - 12 N = 9 N
Thus, the system of interest if the acceleration of the child in the wagon is to be calculated are;
- the wagon
- the children outside the wagon
<h3>Free body diagram</h3>
→ → Ф ←
1st child friction wagon 2nd child
<h3>Acceleration of the child and wagon system</h3>
a = ∑F/m
a = 9 N / 27 kg
a = 0.33 m/s²
<h3>When the frictional force is 21 N</h3>
∑F = 96 N - 75 N - 21 N = 0 N
a = ∑F/m
a = 0/27 kg
a = 0 m/s²
Learn more about net force here: brainly.com/question/14361879
#SPJ1
To explain how transverse and longitudinal waves work, let us give two examples for each particular case.
In the case of transverse waves, the displacement of the medium is PERPENDICULAR to the direction of the wave. One way to visualize this effect is when you have a rope and between two people the rope is shaken horizontally. The shift is done from top to bottom. This phenomenon is common to see it in solids but rarely in liquids and gases. A common application usually occurs in electromagnetic radiation.
On the other hand in the longitudinal waves the displacement of the medium is PARALLEL to the direction of propagation of the wave. A clear example of this phenomenon is when a Slinky is pushed along a table where each of the rings will also move. From practice, sound waves enclose the definition of longitudinal wave displacement.
Therefore the correct answer is:
C. In transverse waves the displacement is perpendicular to the direction of propagation of the wave, while in longitudinal waves the displacement is parallel to the direction of propagation.
The applied force is different for the two cases
The case A with a greater force involves the greatest momentum change
The case A involves the greatest force.
<h3>What is collision?</h3>
- This is the head-on impact between two object moving in opposite or same direction.
The initial momentum of the two ball is the same.
P = mv
where;
- m is the mass of each
- v is the initial velocity of each ball
Since the force applied by the arm is different, the final velocity of the balls before stopping will be different.
Thus, the final momentum of each ball will be different
The impulse experienced by each ball is different since impulse is the change in momentum of the balls.
J = ΔP
The force applied by the rigid arm is greater than the force applied by the relaxed arm because the force applied by the rigid arm will cause the ball to be brought to rest faster.
Thus, we can conclude the following;
- The applied force is different for the two cases
- The case A with a greater force involves the greatest momentum change
- The case A involves the greatest force.
Learn more about impulse here: brainly.com/question/25700778
Answer:
To correct the defects of vision by measuring the radius of curvature and thus the power of the lenses.
Explanation:
A spherometer is an instrument used to measure the curvature of objects such as lenses and curved mirrors.
Generally it consists of a fine screw which is moving in a nut carried on the center of a 3 small legged table or frame. The feet forms the vertices of an equilateral triangle. The lower end of the screw and those of the table legs are finely tapered and terminate in hemispheres.
If the screw has two turns of the thread to the milli meter the head is generally divided into 50 equal parts, so that differences of 0.01 millimeter may be measured without using a vernier scale.
The spherometer is used to measure the radius of curvature of the lenses so that the opthalmologist find the focal length of the lens and then give the power to the lens to correct the defects of vision.
Answer:

Explanation:
Equation of the rocket is,

Here, v' is the relative velocity of rocket.
In space F is zero.
So,

Now the momentum can be obtained by multiply by m on both sides.

Now for maxima, 

Now,

Therefore, the mass of the rocket while having maximum momentum is 