Answer : The correct expression for equilibrium constant will be:
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Therefore, the correct expression for equilibrium constant will be, ![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Molar mass of oxygen gas:
O₂ = 16 * 2 = 32.0 g/mol
1 mole O₂ -------------- 32.0
9.05 mole O₂ ---------- ?
Mass = 9.05 * 32.0
Mass = 289.6 g of O₂
hope this helps!
If I understand you correctly, you should fill the gap and decide which kind og bonds <span> allows metals to conduct electricity. If so, without any doubt I can say that the metalic bonds </span><span> allows metals to conduct electricity. I'm pretty sure it will help you! Regards.</span>
Answer:
Once an enzymatic reaction is completed, the enzyme releases substrates.
Explanation:
The enzyme will always return to its original state at the completion of the reaction. One of the important properties of enzymes is that they remain ultimately unchanged by the reactions they catalyze. After an enzyme is done catalyzing a reaction, it releases its products (substrates).